Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T11:43:25.670Z Has data issue: false hasContentIssue false

Analytical wave functions in self-consistent field models for high-temperature plasma

Published online by Cambridge University Press:  09 March 2009

A.F. Nikiforov
Affiliation:
M.V. Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, 127047 Moscow, Russia
V.G. Novikov
Affiliation:
M.V. Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, 127047 Moscow, Russia
A.D. Solomyannaya
Affiliation:
M.V. Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, 127047 Moscow, Russia

Abstract

The possibility of using the analytical wave functions in hydrogen-like and semiclassical approximations for self-consistent Hartree-Fock-Slater model is considered. The usage of analytical wave functions simplifies the obtaining of self-consistent field and yields the suitable expressions for calculation various characteristics of high-temperature plasmas—cross sections of radiative processes, Rosseland mean opacities, and equation of state.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carson, T.R. et al. 1968 Monthly Notices of the Royal Astronomical Soc. 140, 483.CrossRefGoogle Scholar
Dragalov, V.V. & Novikov, V.G. 1987 Teplofizika Vysokikh Temperatur 25, 1057.Google Scholar
Dragalov, V.V. et al. 1990 Fizika Plastny 16, 77.Google Scholar
Fisher, C.F. 1977 The Hartree-Fock Method for Atoms (John Wiley & Sons, New York).Google Scholar
Frank-Kamenetsky, D.A. 1959 The Physical Processes in Stellar Interior (Fizmatgiz, Moscow).Google Scholar
Grant, I.P. 1970 Advances in Physics 19, 747.CrossRefGoogle Scholar
Gupta, U. & Rajagopal, A.K. 1980 Phys. Rev. A 21, 2064.CrossRefGoogle Scholar
Kautkin, N.N. & Kuz'mina, L.V. 1975 Preprint of the Keldysh Institute of Applied Mathematics No. 35, (Kiam, Moscow).Google Scholar
Kivel, B. et al. 1949 Phys. Rev. 98, 495.CrossRefGoogle Scholar
Moszkowsky, S.A. 1962 Progr. Theor. Phys. 28, 1.CrossRefGoogle Scholar
Nikiforov, A.F. & Uvarov, V.B. 1960 Internal Report of the Keldysh Institute of Applied Mathematics No. 1470 (unpublished).Google Scholar
Nikiforov, A.F. & Uvarov, V.B. 1961 ZVMMF 1, 177.Google Scholar
Nikiforov, A.F. et al. 1979a Voprosy Atomnoj Nauki i Tekhniki 4, 16.Google Scholar
Nikiforov, A.F. et al. 1979b Voprosy Atomnoj Nauki i Tekhniki 4, 27.Google Scholar
Nikiforov, A.F. et al. 1987 Teplofizika Vysokikh Temperatur 25, 12.Google Scholar
Nikiforov, A.F. & Uvarov, V.B. 1988 Special Functions of Mathematical Physics (Birkhäuser, Basel).CrossRefGoogle Scholar
Nikiforov, A.F. et al. 1989 Mathematical Simulation. The Physical-Chemical Properties of Matter (Nauka, Moscow).Google Scholar
Nikiforov, A.F. et al. 1990 Voprosy Atomnoj Nauki i Tekhniki 3, 62.Google Scholar
Nikiforov, A.F. et al. 1996 Teplofizika Vysokikh Temperatur 34, 1.Google Scholar
Novikov, V.G. 1984 Preprint of the Keldysh Institute of Applied Mathematics No. 69, (Kiam, Moscow).Google Scholar
Novikov, V.G. et al. 1993 Teplofizika Vysokikh Temperatur 31, 881.Google Scholar
Novikov, V.G. 1995 Preprint of the Keldysh Institute of Applied Mathematics No. 82, (Kiam, Moscow).Google Scholar
Rose, S.J. 1992 J. Phys. B: At. Mol. Opt. Phys. 25, 1667.CrossRefGoogle Scholar
Rozsnyai, B.F.Phys. Rev. A 5, 1137.CrossRefGoogle Scholar
Rozsnyai, B.F. 1977 JQSRT 17, 77.CrossRefGoogle Scholar
Sampson, D. 1959 Astrophys. J. 129, 734.CrossRefGoogle Scholar
Sobel'man, I.I. 1977 The Introduction in Theory of Atomic Spectra (Nauka, Moscow).Google Scholar