Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T14:24:43.392Z Has data issue: false hasContentIssue false

Application of picosecond terawatt laser pulses for fast ignition of fusion

Published online by Cambridge University Press:  03 May 2013

H. Hora
Affiliation:
University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
University of Illinois, Urbana-Champaign, Illinois
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
A. Salar Elahi*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Address correspondence and reprint requests to: A. Salar Elahi, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: salari_phy@yahoo.com

Abstract

In this research, we presented the application of picosecond terawatt laser pulses for ultrahigh acceleration of plasma blocks for fast ignition of fusion. Ultrahigh acceleration of plasma blocks after irradiation of picosecond laser pulses of around terawatt power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996) as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced. This ultrahigh acceleration resulted from hydrodynamic computations at plane target interaction in 1978 at comparable conditions where the interaction was dominated by the nonlinear (generalized ponderomotive) forces where the laser energy was instantly converted into plasma motion in contrast to slow and delayed thermal collision processes. After clarifying this basic result, the application of the plasma blocks for side-on ignition of solid density or modestly compressed fusion fuel following the theory of Chu (1971) is updated in view of later discovered plasma properties and the ignition of deuterium tritium and of proton-11B appeared possible for a dozen of PW-PS laser pulses if an extremely high contrast ratio avoided relativistic self-focusing. A re-evaluation of more recent experiment confirms the acceleration by the nonlinear force, and the generation of the fusion flame with properties of Rankine-Hugoniot shocks is reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. (1981). Cosmic Plasma. Dordrecht: Reidel.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-density compression experiments at ILE Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Paris, P., Wolowski, J., Kraska, J., Laska, J., Rohlena, K. & Hora, H. (2004). Production of ultrahigh ion current densities at skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press, Vol. 4B, 465494.Google Scholar
Campbell, E.M. (2005). High Intensity Laser-Plasma Interaction and Applications to Inertial Fusion and High Energy Density Physics. Doctor of Science thesis. Sydney: University of Western Sydney/Australia.Google Scholar
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev. A 41, 37273732.CrossRefGoogle ScholarPubMed
Cang, Y., Osman, F.Hora, H., Zhang, J.Badziak, J., Wolowski, J.Jungwirth, K., Rohlena, K. & Ullmschmied, J. (2006). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.CrossRefGoogle Scholar
Cowan, T.E., Parry, M.D., Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Chen, F.F. (1974). Physical mechanisms for laser-plasma parametric instabilities In Laser Interaction and Related Plasma Phenomena (Schwarz, H. J. and Hora, H., Eds.) New York: Plenum Press, Vol. 3A, pp. 291313.Google Scholar
Chu, M.S. (1971). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.Google Scholar
Földes, I.B., Bakos, J.S., Gal, K., Juhasz, Z., Kedves, M.A., Kocsis, G., Szatmari, S. & Veres, G. (2000). Properties of high harmonics generated by ultrashort uv laser pulses on solid surfaces. Laser Phys. 10, 264269.Google Scholar
Földes, I.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575582.CrossRefGoogle Scholar
Gabor, D. (1953) Wave theory of plasmas. Proc. Roy. Soc. (London) A 213, 7286.Google Scholar
Glenzer, S.H., Moses, E., et al. (2011). Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004/1–5.Google ScholarPubMed
Glowacz, S., Badziak, J., Jablonski, J. & Hora, H. (2004). Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Czk J. Phys. 54, C460–C467.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.CrossRefGoogle Scholar
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 12781281.CrossRefGoogle ScholarPubMed
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Z. f. Naturforschung A 33, 890894.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focuing of laser radiation in Plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Cz. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-MingZhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double-layers produced by nonlinear forces in laser-produced plasmas. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghornanneviss, M., Malekynia, B., Azizi, N. & He, X. (2010). Fusion energy without radioactivity: Laser ignition of solid density hydrogen-boron(11) fuel. Ener. Environ. Sci. 3, 479486.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Sandala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, A. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.CrossRefGoogle Scholar
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Nucl. Fusion 21, 398.Google Scholar
Kulsrud, R. (1983). Book Review: Hannes Alfven. Phys. Today 34, 56.Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Li, Yuandi. (2010). Nuclear power without radioactivity. In Highlights in Chemical Technology. London: Royal Chemical Society.Google Scholar
Lindl, J.D. (2005). The Edward Teller Medal Lecture: The evolution toward indirect drive and two decades of progress toward ignition and burn, Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. and Miley, G.H., Eds.) London: Imperial College Press, pp, 121147.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D., Meyer-ter-Vehn, J., Eds.). Paris: Elsevier, pp. 831839.Google Scholar
Nuckolls, J.L. & Woods, L. (2002). Future of inertial fusion energy. Proceedings International Conference on Nuclear Energy Systems ICNES, Albuquerque, NM.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010). Dielectric magnifying of plasma blocks by nonlinear force acceleration and with delayed electron heating. Phys. Plasmas 17, 113108/1–5.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Schlüter, A. (1950). Dynamik des Plasmas – I: Grundgleichungen, Plasma in gekreutzten Feldern. Z. f. Natrur. A 5, 7278.Google Scholar
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A, Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G.Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas 3, 21082112.CrossRefGoogle Scholar
Storm, E. (1986). Press Conference. Lawrence Livermore National Laboratory. 16 January.Google Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W., Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in laboratory high-gain ICF: Progress for the future Livermore. LLNL Report 47312.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.CrossRefGoogle Scholar
Szatmari, S. (1994). Appl. Phys. B 58, 211.CrossRefGoogle Scholar
Veres, G., Kocsis, G., Racz, E. & Szatmari, S. (2004). Doppler shift of femtosecond pulses from solid density plasmas. Appl. Phys. B 78, 635638.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultra powerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Yamanaka, C. & Nakai, S. (1986). Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser. Nat. 319, 757759.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.CrossRefGoogle Scholar