Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T10:35:07.108Z Has data issue: false hasContentIssue false

Asymmetric implosion of a cone-guided target irradiated by Gekko XII laser

Published online by Cambridge University Press:  30 April 2015

T. Yanagawa*
Affiliation:
Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
H. Sakagami
Affiliation:
Fundamental Physics Simulation Research Division, National Institute for Fusion Science, Oroshi-cho, Toki, Gifu, Japan
A. Sunahara
Affiliation:
Institute for Laser Technology, Suita, Osaka, Japan
H. Nagatomo
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
*
Address correspondence and reprint requests to: T. Yanagawa, Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. E-mail: yanagawa.takumi@nifs.ac.jp

Abstract

In implosion experiments of a cone-guided target using Gekko XII laser, the lasers on the cone side are not irradiated to avoid the irradiation of the cone. In such condition, the implosion process is done highly asymmetrically. Thus we evaluated the effects of the asymmetric implosion on the compression ratio of the fuel in Gekko XII irradiation orientation by three-dimensional hydro simulations. In this paper, we discuss the degradation of the compression ratio by asymmetric implosion and show that the compression ratio can be enhanced by adjusting the laser intensity between each beam to reduce the asymmetry of the implosion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.CrossRefGoogle Scholar
Azechi, H., Mima, K., Fujimoto, Y., Fujioka, S., Homma, H., Isobe, M., Iwamoto, A., Jitsuno, T., Johzaki, T., Kodama, R., Koga, M., Kondo, K., Kawanaka, J., Mito, T., Miyanaga, N., Motojima, O., Murakami, M., Nagatomo, H., Nagai, K., Nakai, M., Nakamura, H., Nakamura, T., Nakazato, T., Nakao, Y., Nishihara, K., Nishimura, H., Norimatsu, T., Ozaki, T., Sakagami, H., Sakawa, Y., Sarukura, N., Shigemori, K., Shimizu, T., Shiraga, H., Sunahara, A., Taguchi, T., Tanaka, K.A. & Tsubakimoto, K. (2009). Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) project. Nucl. Fusion 49, 104024.CrossRefGoogle Scholar
Casner, A., Smalyuk, V.A., Masse, L., Igumenshchev, I., Liberatore, S., Jacquet, L., Chicanne, C., Loiseau, P., Poujade, O., Bradley, D.K., Park, H.S. & Remington, B.A. (2012). Designs for highly nonlinear ablative Rayleigh–Taylor experiments on the National ignition facility. Phys. Plasmas 19, 082708.CrossRefGoogle Scholar
Chaudhuri, A., Hadjadj, A. & Chinnayya, A. (2011). On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230, 17311748.CrossRefGoogle Scholar
Hata, M., Sakagami, H., Johzalo, T. & Nagatomo, H. (2013). Effects of laser profiles on fast electron generation under the same laser energy. Laser Part. Beams 31, 371377.CrossRefGoogle Scholar
Heya, M., Shiraga, H., Sunahara, A., Nakasuji, M., Nishikino, M., Honda, H., Fujita, K., Izumi, N., Miyanaga, N., Nishimura, H., Azechi, H., Naruo, S., Takabe, H., Yamanaka, T. & Mima, K. (2001). Implosion experiments of gas-filled plastic-shell targets with 1 drive nonuniformity at the Gekko XII glass laser. Laser Part. Beams 19, 267284.CrossRefGoogle Scholar
Hu, S.X., Goncharov, V.N., Radha, P.B., Marozas, J.A., Skupsky, S., Boehly, T.R., Sangster, T.C., Meyerhofer, D.D. & McCrory, R.L. (2010). Two-dimensional simulations of the neutron yield in cryogenic deuterium–tritium implosions on OMEGA. Phys. Plasmas 17, 102706.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Kodama, R., Shiraga, H., Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Naki, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933934.CrossRefGoogle ScholarPubMed
Li, C.K., Seguin, F.H., Frenje, J.A. & Petrasso, R.D. (2004). Effects of nonuniform illumination on implosion asymmetry in direct-drive inertial confinement fusion. Phys. Rev. Lett. 92, 205001.CrossRefGoogle ScholarPubMed
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National ignition facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Ma, T., Patel, P.K., Izumi, N., Springer, P.T., Key, M.H., Atherton, L.J., Benedetti, L.R., Bradley, D.K., Callahan, D.A., Celliers, P.M., Cerjan, C.J., Clark, D.S., Dewald, E.L., Dixit, S.N., Doppner, T., Edgell, D.H., Epstein, R., Glenn, S., Grim, G., Haan, S.W., Hammel, B.A., Hicks, D., Hsing, W.W., Jones, O.S., Khan, S.F., Kilkenny, J.D., Kline, J.L., Kyrala, G.A., Landen, O.L., Pape, S. Le, MacGowan, B.J., Mackinnon, A.J., MacPhee, A.G., Meezan, N.B., Moody, J.D., Pak, A., Parham, T., Park, H.-S., Ralph, J.E., Regan, S.P., Remington, B.A., Robey, H.F., Ross, J.S., Spears, B.K., Smalyuk, V., Suter, L.J., Tommasini, R., Town, R.P., Weber, S.V., Lindl, J.D., Edwards, M.J., Glenzer, S.H. & Moses, E.I. (2013). Onset of Hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett. 111, 085004.CrossRefGoogle ScholarPubMed
Mittal, R. & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Nagatomo, H., Johzaki, T., Nakamura, T., Sakagami, H., Sunahara, A. & Mima, K. (2007). Simulation and design study of cryogenic cone shell target for Fast Ignition Realization Experiment project. Phys. Plasmas 14, 056303.CrossRefGoogle Scholar
Nagatomo, H., Johzaki, T., Sakagami, H., Sentoku, Y., Sunahara, A., Taguchi, T., Shiraga, H., Azechi, H. & Mima, K. (2009). Numerical study of the advanced target design for FIREX-I. Nucl. Fusion 49, 075028.CrossRefGoogle Scholar
Peskin, C.S. (1972). Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252271.CrossRefGoogle Scholar
Regan, S.P., Epstein, R., Hammel, B.A., Suter, L.J., Ralph, J., Scott, H., Barrios, M.A., Bradley, D.K., Callahan, D.A., Cerjan, C., Collins, G.W., Dixit, S.N., Doeppner, T., Edwards, M.J., Farley, D.R., Glenn, S., Glenzer, S.H., Golovkin, I.E., Haan, S.W., Hamza, A., Hicks, D.G., Izumi, N., Kilkenny, J.D., Kline, J.L., Kyrala, G.A., Landen, O.L., Ma, T., MacFarlane, J.J., Mancini, R.C., McCrory, R.L., Meezan, N.B., Meyerhofer, D.D., Nikroo, A., Peterson, K.J., Sangster, T.C., Springer, P. & Town, R.P.J. (2012). Hot-spot mix in ignition-scale implosions on the NIF. Phys. Plasmas 19, 056307.CrossRefGoogle Scholar
Rygg, J.R., Frenje, J.A., Li, C.K., Seguin, F.H., Petrasso, R.D., Marshall, F.J., Delettrez, J.A., Knauer, J.P., Meyerhofer, D.D. & Stoeckl, C. (2008). Observations of the collapse of asymmetrically driven convergent shocks. Phys. Plasmas 15, 034505.CrossRefGoogle Scholar
Sakagami, H. & Nishihara, K. (1990). Three-dimensional Rayleigh–Taylor instability of spherical systems. Phys. Rev. Lett. 65, 432435.CrossRefGoogle ScholarPubMed
Sakagami, H., Sunahara, A., Johzaki, T. & Nagatomo, H. (2012). Effects of long rarefied plasma on fast electron generation for FIREX-I targets. Laser Part. Beams 30, 103109.CrossRefGoogle Scholar
Shay, H.D., Amendt, P., Clark, D., Ho, D., Key, M., Koning, J., Marinak, M., Strozzi, D. & Tabak, M. (2012). Implosion and burn of fast ignition capsules – calculations with HYDRA. Phys. Plasmas 19, 092706.CrossRefGoogle Scholar
Shiraga, H., Fujioka, S., Nakai, M., Watari, T., Nakamura, H., Arikawa, Y., Hosoda, H., Nagai, T., Koga, M., Kikuchi, H., Ishii, Y., Sogo, T., Shigemori, K., Nishimura, H., Zhang, Z., Tanabe, M., Ohira, S., Fujii, Y., Namimoto, T., Sakawa, Y., Maegawa, O., Ozaki, T., Tanaka, K., Habara, H., Iwawaki, T., Shimada, K., Nagatomo, H., Johzaki, T., Sunahara, A., Murakami, M., Sakagami, H., Taguchi, T., Norimatsu, T., Homma, H., Fujimoto, Y., Iwamoto, A., Miyanaga, N., Kawanaka, J., Jitsuno, T., Nakata, Y., Tsubakimoto, K., Morio, N., Kawasaki, T., Sawai, K., Tsuji, K., Murakami, H., Kanabe, T., Kondo, K., Sarukura, N., Shimizu, T., Mima, K. & Azechi, H. (2011). Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Phys. Control. Fusion 53, 124029.CrossRefGoogle Scholar
Stephens, R.B., Hatchett, S.P., Tabak, M., Stoeckl, C., Shiraga, H., Fujioka, S., Bonino, M., Nikroo, A., Petrasso, R., Sangster, T.C., Smith, J. & Tanaka, K.A. (2005). Implosion hydrodynamics of fast ignition targets. Phys. Plasmas 12, 056312.CrossRefGoogle Scholar
Sunahara, A., Johzaki, T., Nagatomo, H. & Mima, K. (2012). Generation of pre-formed plasma and its reduction for fast-ignition. Laser Part. Beams 30, 95102.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Temporal, M., Ramis, R., Canaud, B., Brandon, V., Laffite, S. & Garrec, B.J.Le. (2011). Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme. Plasma Phys. Control. Fusion 53, 124008.CrossRefGoogle Scholar
Theobald, W., Solodov, A.A., Stoeckl, C., Anderson, K.S., Betti, R., Boehly, T.R., Craxton, R.S., Delettrez, J.A., Dorrer, C., Frenje, J.A., Glebov, V.Yu., Habara, H., Tanaka, K.A., Knauer, J.P., Lauck, R., Marshall, F.J., Marshall, K.L., Meyerhofer, D.D., Nilson, P.M., Patel, P.K., Chen, H., Sangster, T.C., Seka, W., Sinenian, N., Ma, T., Beg, F.N., Giraldez, E. & Stephens, R.B. (2011). Initial cone-in-shell fast-ignition experiments on OMEGA. Phys. Plasmas 18, 056305.CrossRefGoogle Scholar
Thomas, V.A. & Kares, R.J. (2012). Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109, 075004.CrossRefGoogle Scholar
Yanagawa, T., Sakagami, H. & Nagatomo, H. (2013). Simulation analysis of the effects of an initial cone position and opening angle on a cone-guided implosion. Phys. Plasmas 20, 102703.CrossRefGoogle Scholar