Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:31:52.679Z Has data issue: false hasContentIssue false

Atomic physics for inertial fusion using average correlated hydrogenic atom model

Published online by Cambridge University Press:  09 March 2009

G. Maynard
Affiliation:
CNRS, URA073 and GDR 918, Laboratoire de Physique des Gaz et des Plasmas, Bâat. 212, Université Paris XI, 91405 Orsay, France
C. Deutsch
Affiliation:
CNRS, URA073 and GDR 918, Laboratoire de Physique des Gaz et des Plasmas, Bâat. 212, Université Paris XI, 91405 Orsay, France
P. Fromy
Affiliation:
CNRS, URA073 and GDR 918, Laboratoire de Physique des Gaz et des Plasmas, Bâat. 212, Université Paris XI, 91405 Orsay, France
K. Katsonis
Affiliation:
CNRS, URA073 and GDR 918, Laboratoire de Physique des Gaz et des Plasmas, Bâat. 212, Université Paris XI, 91405 Orsay, France

Abstract

The influence of discrepancies between analytical expressions for charge changing cross section on the ionization state of swift heavy ions interacting with hot and dense plasmas is analyzed within the framework of our new average correlated hydrogenic atom model. Making use of our Classical Trajectory Monte-Carlo results, we show that the partial charge transfer cross section into the projectile atomic levels has the same importance as the total charge transfer cross section.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayley, D. et al. 1983 J. Physique C8, 149.Google Scholar
Betz, H.D. & Grodzins, L. 1970 Phys. Rev. Lett. 25, 211.CrossRefGoogle Scholar
Chabot, M. et al. 1993 Il Nuovo Cimento 106A, 1789.CrossRefGoogle Scholar
Eichler, J. & Chan, F.T. 1979 Phys. Rev. A 20, 104.CrossRefGoogle Scholar
Gardès, D. et al. 1992 Phys. Rev. A 46, 5101.CrossRefGoogle Scholar
Hoffmann, D.H.H. et al. 1993 Rad. Effects and Defects in Solids 126, 345.Google Scholar
Maynard, G. & Deutsch, C. 1988 J. Physique C7, 89.Google Scholar
Maynard, G. & Deutsch, C. 1989 Rad. Effects and Defects in Solids 110, 157.CrossRefGoogle Scholar
Maynard, G. & Deutsch, C. 1993 Phys. Scripta 48, 471.CrossRefGoogle Scholar
Maynard, G. et al. 1992 J. Phys. B 25, 437.CrossRefGoogle Scholar
Maynard, G. et al. 1993 Il Nuovo Cimento 106A, 1825.Google Scholar
More, R.M. et al. 1988 In AIP Conference Proceedings Hauer, A. and Merts, A.L., eds., 168, p. 33.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1982 Phys. Rev. Lett. 49, 1251.CrossRefGoogle Scholar
Peter, T.P. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 2015.Google Scholar
Schlachter, A.S. et al. 1983 Phys. Rev. A 27, 3372.CrossRefGoogle Scholar