Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T14:49:26.575Z Has data issue: false hasContentIssue false

Bright source of Kα and continuum X rays by heating Kr clusters using a femtosecond laser

Published online by Cambridge University Press:  25 March 2004

R. ISSAC
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
J. WIRTHIG
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
E. BRUNETTI
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
G. VIEUX
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
B. ERSFELD
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
S.P. JAMISON
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
D. JONES
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
R. BINGHAM
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
D. CLARK
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
D.A. JAROSZYNSKI
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom

Abstract

X rays emitted from Kr clusters illuminated by a femtosecond laser have been observed over a wide spectral region from 3 keV to 15 keV. The measured spectra are characterized by a broad bremsstrahlung continuum and Kα, β lines at 12.66 keV and 14.1 keV. To the best of the authors' knowledge, this is the first observation of Kα, β emission from laser-heated Kr clusters. The bremsstrahlung continuum arising from collisions in the plasma implies a population of hot electrons consistent with a temperature of several kiloelectron volts. The absolute X-ray yield in the 3–15 keV region is found to be of the order of 107 photons per laser pulse. The plasma temperature, estimated from the continuum part of the spectrum as a function of laser intensity and X-ray yield as a function of laser pulse duration, are studied.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Jr., Faenov, A.Ya., Skobelev, I.Yu., Magunov, A.I., Pikuz, T.A., Auguste, T., D'Oliveira, P., Hulin, S. & Monot P. (2001). Hot-electron influence on the x-ray emission spectra of Ar clusters heated by a high-intensity 60-fs laser pulse. Phys. Rev. A 63, 032706.Google Scholar
Brunner, W. (1997). Intra-cluster ionization and X-ray emission. Appl. Phys. B 64, 443450.Google Scholar
Chen, L.M., Park, J.J., Hong, K-H., Kim, J.L., Zhang, J. & Nam, C.H. (2002). Emission of a hot electron jet from intense femtosecond-laser-cluster interactions. Phys. Rev. E 66, 025402.Google Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 33793402.Google Scholar
Dobosz, S., Lezius, M., Schmidt, M., Meynadier, P., Perdrix, M., Normand, D., Rozet, J.-P. & Vernhet D. (1997). Absolute keV photon yields from ultrashort laser-field-induced hot nanoplasmas. Phys. Rev. A 56, R2526R2529.Google Scholar
Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Ellert, K., Blenski, T., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y. & Andreev, N.E. (1999). Observation of ions with energies above 100 keV produced by the interaction of a 60-fs laser pulse with clusters. J. Exp. The. Phys. 88, 11221129.Google Scholar
Edwards, M.J., MacKinnon, A.J., Zweiback, J., Shigemori, K., Ryutov, D., Rubenchik, A.M., Keilty, K.A., Liang, E., Remington, B.A. & Ditmire, T. (2001). Investigation of ultrafast laser-driven radiative blast waves. Phys. Rev. Lett. 87, 085004.Google Scholar
Giulietti, D. & Gizzi, L.A. (1998). X-ray emission from laser-produced plasmas. Rivista del Nuovo Cimento 21, 193.Google Scholar
Hagena, O.F. (1992). Cluster ion sources. Rev. Sci. Instr. 63, 23742379.Google Scholar
Hulin, S., Auguste, T., D'Oliveira, P., Monot, P., Jacquemot, S., Bonnet, L. & Lefebvre, E. (2000). Soft-x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen. Phys. Rev. E 61, 56935700.Google Scholar
Junkel-Vives, G.C., Abdallah, J., Jr., Blasco, F., Stenz, C., Salin, F., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2001). Observation of H-like ions within argon clusters irradiated by 35-fs laser via high-resolution x-ray spectroscopy. Phys. Rev. A 64, 021201.Google Scholar
Korn, G., Thoss, A., Stiel, H., Vogt, U., Richardson, M., Elsaesser, T. & Faubel, M. (2002). Ultrashort 1-kHz laser plasma hard x-ray source. Opt. Lett. 27, 866868.Google Scholar
Krainov, V.P. & Smirnov, M.B. (2002). Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370, 237331.Google Scholar
Kumarappan, V., Krishnamurthy, M. & Mathur, D. (2002). Two-dimensional effects in the hydrodynamic expansion of xenon clusters under intense laser irradiation. Phys. Rev. A 66, 033203.Google Scholar
McPherson, A., Luk, T.S., Thompson, B.D., Boyer, K. & Rhodes, C.K. (1993). Multiphoton-induced x-ray-emission and amplification from clusters. Appl. Phys. B 57, 337347.Google Scholar
Milchberg, H.M., McNaught, S.J. & Parra, E. (2001). Plasma hydrodynamics of the intense laser-cluster interaction. Phys. Rev. E 64, 056402.Google Scholar
Nishihara, K., Amitani, H., Murakami, M., Bulanov, S.V. & Esirkepov, T.Z. (2001). High energy ions generated by laser driven Coulomb explosion of cluster. Nucl. Instrum. Methods Phys. Res. 464, 98102.Google Scholar
Parks, P.B., Cowan, T.E., Stephens, R.B. & Campbell, E.M. (2001). Model of neutron-production rates from femtosecond-laser-cluster interactions. Phys. Rev. A 63, 063203.Google Scholar
Parra, E., Alexeev, I., Fan, J., Kim, K.Y., McNaught, S.J. & Milchberg, H.M. (2000). X-ray and extreme ultraviolet emission induced by variable pulse-width irradiation of Ar and Kr clusters and droplets. Phys. Rev. E 62, R5931R5934.Google Scholar
Rocca, J.J. (1999). Table-top soft x-ray lasers. Rev. Sci. Instrum. 70, 37993827.Google Scholar
Schwoerer, H., Gibbon, P., Düsterer, S., Behrens, R., Ziener, C., Reich, C. & Sauerbrey, R. (2001). MeV X Rays and photoneutrons from femtosecond laser-produced plasmas. Phys. Rev. Lett. 86, 23172320.Google Scholar
Shao, Y.L., Ditmire, T., Tisch, J.W.G., Springate, E., Marangos, J.P. & Hutchinson, M.H.R. (1996). Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett 77, 33433346.Google Scholar
Silin, V.P. (1965). Nonlinear high-frequency plasma conductivity. Sov. Phys. JETP 20, 15101516.Google Scholar
Skobelev, I.Y., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Boldarev, A.S., Gasilov, V.A., Abdallah, J., Junkel-Vives, G.C., Auguste, T., d'Oliveira, P., Hulin, S., Monot, P., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Stenz, C., Salin, F. & Sharkov, B.Y. (2002). On the interaction of femtosecond laser pulses with cluster targets. JETP 94, 7383.Google Scholar
Ter-Avetisyan, S., Schnürer, M., Stiel, H., Vogt, U., Radloff, W., Karpov, W., Sandner, W. & Nickles, P.V. (2001). Absolute extreme ultraviolet yield from femtosecond-laser-excited Xe clusters. Phys. Rev. E 64, 036404.Google Scholar
Wormer, J., Guzielski, V., Stapelfeldt, J. & Moller, T. (1989). Fluorescence excitation spectroscopy of xenon clusters in the VUV. Chem. Phys. Lett. 19, 321326.Google Scholar
Yaakobi, B., Marshall, F.J. & Epstein, R. (1996). High temperature of laser-compressed shells measured with Kr34+ and Kr35+ x-ray lines. Phys. Rev. E 54, 58485850.Google Scholar
Zweiback, J., Ditmire, T. & Perry M.D. (1999). Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. A 59, R3166R3169.Google Scholar
Zweiback, J., Cowan, T.E., Smith, R.A., Hartley, J.H., Howell, R., Steinke, C.A., Hays, G., Wharton, K.B., Crane, J.K. & Ditmire, T. (2000). Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85, 36403643.Google Scholar