Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:42:59.858Z Has data issue: false hasContentIssue false

Centroid and envelope dynamics of charged particle beams in an oscillating wobbler and external focusing lattice for heavy ion fusion applications

Published online by Cambridge University Press:  13 September 2011

Hong Qin*
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China
Ronald C. Davidson
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
B. Grant Logan
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California
*
Address correspondence and reprint requests to: Hong Qin, Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543. E-mail: hongqin@princeton.edu

Abstract

Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1 MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called “wobblers.” Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnard, J. (1996). In Proceedings of the 1995 Particle Accelerator Conferences, p. 3241. New York: IEEE.Google Scholar
Bernal, S., Li, H., Kishek, R., Quinn, B., Walter, M., Reiser, M., O'Shea, P. & Allen, C. (2006). RMS envelope matching of electron beams from zero current to extreme space charge in a fixed lattice of short magnets. Physi. Rev.: Accele. and Beams 9, 117.Google Scholar
Blind, B. & Gilpatrick, J.D. (2007). LANSCE-linac beam-centroid jitter in transverse phase space. In Proceedings of 2007 Particle Accelerator Conference, pp. 40934095. New York: IEEE.CrossRefGoogle Scholar
Davidson, R.C. & Qin, H. (2001). Physics of Intense Charged Particle Beams in High Energy Accelerators. Imperial College Press and World Scientific.CrossRefGoogle Scholar
Dorf, M.A., Davidson, R.C., Startsev, E.A. & Qin, H. (2009). Phys. Plasmas 16, 123107.Google Scholar
Friedman, A., Barnard, J., Briggs, R., Davidson, R., Dorf, M., Grote, D., Hene-Stroza, E., Lee, E., Leitner, M. & Logan, B. (2009). Towward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies. Nucl. Instr. Meth. Phys. Res. A606, 610.CrossRefGoogle Scholar
Hoffmann, D.H.H. (2009). Private communication.Google Scholar
Kapchinskij, I. & Vladimirskij, V. (1959). In Proc. of the International Conference on High Energy Accelerators and Instrumentation. Geneva: CERN Scientific Information Service.Google Scholar
Kawata, S., Sato, T., Teramoto, T., Bandoh, E., Masubichi, Y. & Takahashi, I. (1993). Radiation effect on pellet implosion and Rayleigh-Taylor instability in light-ion beam inertial confinement fusion. Laser Part. Beams 11, 757.CrossRefGoogle Scholar
Lee, E., Close, E. & Smith, L. (1998). In Proceedings of the 1987 Particle Accelerator Conference, p. 1186. New York: IEEE.Google Scholar
Logan, G.G. (2011). To be published.Google Scholar
Logan, B.G., Perkins, L.J. & Barnard, J.J. (2008). Direct drive heavy-ion-beam inertial fusion at high coupling efficiency. Phys. plasmas 15, 072701.CrossRefGoogle Scholar
Lund, S. & Barnard, J.J. (2009). U.S. Part. Accel. Shool lecture Notes. U.S. Part. Accel. Shool Lecture Notes.Google Scholar
Lund, S. & Bukh, B. (2004). Stability properties of the transverse envelope equations describing intense ion beam transport. Phys. Revi.: Accel. Beams 7, 147.Google Scholar
Neuffer, D., Colton, E., Fitzgerald, D., Hardek, T., R. Macek, R.H., Plum, M., Thiessen, H. & Wang, T.S. (1992). Nucl. Instr. Methods Phys. Res. A321, 1.Google Scholar
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003 a). Generation of a hollow ion beam: Calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Cela, J.J.L., Tahir, N.A. & Hoffmann, D.H.H. (2003 b). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Cont. Fusion 45, 17331745.CrossRefGoogle Scholar
Qin, H. & Davidson, R.C. (2009). In Proceedings of the 2009 Particle Accelerator Conference. New York: IEEE.Google Scholar
Qin, H., Davidson, R.C., Barnard, J.J. & Lee, E.P. (2004). Drift compression and final focus for intense heavy ion beams with nonperiodic, time-dependent lattice. Phys. Rev.: Accele. Beams 7, 104201.Google Scholar
Qin, H., Davidson, R.C. & Logan, B.G. (2010). Centroid and envelope dynamics of highintensity charged particle beams in an external focusing lattice and oscillating wobbler. Phy.Rev. Lett. 104, 254801.CrossRefGoogle Scholar
Sharkov, B. (2007). Overview of Russian heavy-ion inertial fusion energy program. Nucl. Instr. Methods Phys. Res. A577, 1430.CrossRefGoogle Scholar
Sharp, W., Barnard, J. & Yu, S. (1992). Particle Accele. 37–38, 205.Google Scholar
Skupsky, S., Kessler, T., Letzring, S. & Chuang, Y. (1993). Laser-beam pulse shaping using spectral beam deflecction. J. Appl. Phys. 73, 2678.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozereva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Neuner, P.S.U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001) Phys. Rev. E 63, 016402.CrossRefGoogle Scholar
Tahir, N., Stohlker, T., Shutov, A., Lomonosov, I., Forotv, V., French, M., Nettelmann, N., Redmer, R., Piriz, A., Deutsch, C., Zhao, Y., Xu, H., Xio, G. & Zhan, P. (2010). Ultra High Compression of Water Using Intense Heavy lon Beams: Laboratory Planetary Physics. New. J. Phys. 12, 073022.CrossRefGoogle Scholar
Zimmermann, R. (2004). Review of single bunch instabilities driven by an electron cloud. Phys. Rev.: Accele. Beams 7, 124801.Google Scholar