Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T05:09:11.541Z Has data issue: false hasContentIssue false

Characterization of laser-driven electron and photon beams using the Monte Carlo code FLUKA

Published online by Cambridge University Press:  19 February 2014

F. Fiorini*
Affiliation:
Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
D. Neely
Affiliation:
Central Laser Facility, STFC RAL, Oxfordshire, United Kingdom
R.J. Clarke
Affiliation:
Central Laser Facility, STFC RAL, Oxfordshire, United Kingdom
S. Green
Affiliation:
Hall-Edwards Radiotherapy Research Group, Department of Medical Physics, University Hospital Birmingham NHS Trust, Birmingham, United Kingdom
*
Address correspondence and reprint requests to: F. Fiorini, Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK. E-mail: francesca.fiorini@oncology.ox.ac.uk or francesca.fiorini83@gmail.com

Abstract

We present a new simulation method to predict the maximum possible yield of X-rays produced by electron beams accelerated by petawatt lasers irradiating thick solid targets. The novelty of the method lies in the simulation of the electron refiluxing inside the target implemented with the Monte Carlo code Fluka. The mechanism uses initial theoretical electron spectra, cold targets and refiluxing electrons forced to re-enter the target iteratively. Collective beam plasma effects are not implemented in the simulation. Considering the maximum X-ray yield obtained for a given target thickness and material, the relationship between the irradiated target mass thickness and the initial electron temperature is determined, as well as the effect of the refiluxing on X-ray yield. The presented study helps to understand which electron temperature should be produced in order to generate a particular X-ray beam. Several applications, including medical and security imaging, could benefit from laser generated X-ray beams, so an understanding of the material and the thickness maximizing the yields or producing particular spectral characteristics is necessary. On the other more immediate hand, if this study is experimentally reproduced at the beginning of an experiment in which there is an interest in laser-driven electron and/or photon beams, it can be used to check that the electron temperature is as expected according to the laser parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Battistoni, G, Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fassò, A. & Ranft, J. (2007). The FLUKA code: Description and benchmarking. AIP Confer. Proc. 896, 3149.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser-solid interactions up to 1019 Wcm−2. Phys. Plasmas 4, 447457.CrossRefGoogle Scholar
Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Contr. Fusion 39, 653.CrossRefGoogle Scholar
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams-Pulse Power & High Energy Densities 23, 411416.Google Scholar
Cho, B.I., Osterholz, J., Bernstein, A.C., Dyer, G.M., Karmakar, A., PUnited Kingdomhov, A. & Ditmire, T. (2009). Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions. Phys. Rev. E 80, 055402.CrossRefGoogle ScholarPubMed
Coury, M., Carroll, D.C., Robinson, A.P.L., Yuan, X.H., Brenner, C.M., Burza, M., Gray, R.J., Quinn, M.N., Lancaster, K.L., Li, Y.T., et al. (2012). Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets. Appl. Phys. Lett. 100, 074105–074105.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Reports Progr. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
Eliezer, S. (2002) The interaction of high-power lasers with plasmas. New York: Taylor & Francis.CrossRefGoogle Scholar
Fassò, A., Ferrari, A., Ranft, J. & Sala, P.R. (2005). FLUKA: a multi-particle transport code. CERN-2005-10. INFN/TC_05/11, SLAC-R-773.Google Scholar
Fiorini, F. (2012). Experimental and computational dosimetry of laser-driven radiation beams. PhD thesis, Birmingham:, University of Birmingham.Google Scholar
Fiorini, F., Kirby, D., Borghesi, M., Doria, D., Jeynes, J.C.G., Kakolee, K.F., Kar, S., Litt, S.K., Kirkby, K.J., Merchant, M.J. & Green, S. (2011). Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams. Phys. Med. Biol. 56, 69696982.CrossRefGoogle ScholarPubMed
Freidberg, J.P., Mitchell, R.W., Morse, R.L. & Rudsinski, L.I. (1972). Resonant absorption of laser light by plasma targets. Phys. Rev. Lett. 28, 795799.CrossRefGoogle Scholar
Galy, J., Maučec, M., Hamilton, D.J., Edwards, R. & Magill, J. (2007). Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9, 23.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Dain, L.L., Darbon, S., Hosokai, T., Santos, J.J., Lefebvre, E., Rousseau, J.P., Burgy, F., Mercier, B., et al. (2005). High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett. 94, 25003.CrossRefGoogle ScholarPubMed
Gray, R.J., Yuan, X.H., Carroll, D.C., Brenner, C.M., Coury, M., Quinn, M.N., Tresca, O., Zielbauer, B., Aurand, B., Bagnoud, V., et al. (2011). Surface transport of energetic electrons in intense picosecond laser-foil interactions. Appl. Phys. Lett. 99, 171502–171502.CrossRefGoogle Scholar
Kruer, W.L. & Dawson, J.M. (1989). The physics of laser plasma interactions. Phys. Today 42, 69.CrossRefGoogle Scholar
Ledingham, K.W.D. & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys. 12, 045005.CrossRefGoogle Scholar
Myatt, J., Theobald, W., Delettrez, J.A., Stoeckl, C., Storm, M., Sangster, T.C., Maximov, A.V. & Short, R.W. (2007). High-intensity laser interactions with mass-limited solid targets and implications for fast-ignition experiments on OMEGA EP. Phys. Plasmas 14, 056301.CrossRefGoogle Scholar
Nilson, P.M., Davies, J.R., Theobald, W., Jaanimagi, P.A., Mileham, C., Jungquist, R.K., Stoeckl, C., Begishev, I.A., Solodov, A.A., Myatt, J.F., Zuegel, J.D., Sangster, T.C., Betti, R. & Meyerhofer, D.D. (2012). Time-resolved measurements of hot-electron equilibration dynamics in high-intensity laser interactions with thin-foil solid targets. Phys. Rev. Lett. 108, 085002.CrossRefGoogle ScholarPubMed
Nishikino, M., Sato, K., Ohshima, S., Hasegawa, N., Ishino, M., Kawachi, T., Okano, Y., Numasaki, H., Teshima, T. & Nishimura, H. (2009). Development of focused laser plasma x-ray beam for radiobiological applications. Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America.CrossRefGoogle Scholar
Norreys, P.A., Scott, R.H.H., Lancaster, K.L., Green, J.S., Robinson, A.P.L., Sherlock, M., Evans, R.G., Haines, M.G., Kar, S., Zepf, M., et al. (2009). Recent fast electron energy transport experiments relevant to fast ignition inertial fusion. Nucl. Fusion 49, 104023.CrossRefGoogle Scholar
Perry, M.D., Sefcik, J.A., Cowan, T., Hatchett, S., Hunt, A., Moran, M., Pennington, D., Snavely, R. & Wilks, S.C. (1999). Hard X-ray production from high intensity laser solid interactions. Rev. Scientif. Instr. 70, 265.CrossRefGoogle Scholar
Quinn, M.N., Yuan, X.H., Lin, X.X., Carroll, D.C., Tresca, O., Gray, R.J., Coury, M., Li, C., Li, Y.T., Brenner, C.M., et al. (2011). Refluxing of fast electrons in solid targets irradiated by intense, picosecond laser pulses. Plasma Phys. Contr. Fusion 53, 025007.CrossRefGoogle Scholar
Santala, M.I.K., Zepf, M., Watts, I., Beg, F.N., Clark, E., Tatarakis, M., Krushelnick, K., Dangor, A.E., McCanny, T., Spencer, I., et al. (2000). Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Phys. Rev. Lett. 84, 14591462.CrossRefGoogle ScholarPubMed
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). ”Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.CrossRefGoogle Scholar