Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T01:17:12.022Z Has data issue: false hasContentIssue false

Charged particle acceleration by electron Bernstein wave in a plasma channel

Published online by Cambridge University Press:  21 July 2010

Asheel Kumar*
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India Permanent address: Department of Physics, University of Allahabad, Allahabad-211002, U.P., India
Binod K. Pandey
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
V.K. Tripathi
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
*
Address correspondence and reprint requests to: Asheel Kumar, Department of Physics, University of Allahabad, Allahabad-211002, U.P., India. E-mail: asheel2002@yahoo.co.in

Abstract

A model of electron acceleration by an electron Bernstein mode in a parabolic density profile is developed. The mode has a Gaussian profile. It could be excited via the mode conversion of an electromagnetic wave or by an electron beam. As it attains a large amplitude, it axially traps electrons moving close to its parallel phase velocity, where parallel refers to the direction of static magnetic field. As the electrons are accelerated and tend to get out of phase with the wave, the transverse field of the mode enhances its energy and relativistic mass, increasing the dephasing length. The scheme can produce electron energies up to a few MeV.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akimoto, K. (2002). Acceleration and heating of charged particles by a dispersive electrostatic pulse. Phys. Plasmas 9, 37213733.CrossRefGoogle Scholar
Akimoto, K. (2003). Net accelerations of charged particles by a generalized electromagnetic wave. Phys. Plasmas 10, 42244236.CrossRefGoogle Scholar
Amiranoff, F., Antonetti, A., Audebert, P., Bernard, D., Cros, B., Dorchies, F., Gauthier, J.C., Geindre, J.P., Grillon, G., Jacquet, F., Mathieussent, G., Marques, J.R., Mine, P., Mora, P., Modena, A., Morillo, J., Moulin, F., Najmudin, Z., Specka, A.E. & Stenz, C. (1996). Laser particle acceleration: beat-wave and wakefield experiments. Plasma Phys. Contr. Fusion 38, A295A300.Google Scholar
Balakirev, V.A., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.Google Scholar
Balakirev, V.A., Karas, I.V., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.CrossRefGoogle Scholar
Bingham, R., Mendonca, J.T. & Shukla, P.K. (2004). Plasma based charged-particle accelerators. Plasma Phys. control. Fusion 46, R1R23.CrossRefGoogle Scholar
Cao, L., Yu, W., Xu, H., Zheng, C., Liu, Z. & Li, B. (2004). Electron acceleration by the short pulse laser in inhomogeneous underdense plasmas. J. Plasma Phys. 70, 625634.CrossRefGoogle Scholar
Chien, T.-Y., Chang, C.-L., Lee, C.-H., Lin, J.-Y., Wang, J. & Chen, S.-Y. (2005). Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp. Phys. Rev. Lett. 94, 115003.CrossRefGoogle Scholar
Clayton, C.E., Everett, M.J., Lal, A., Gordon, D., Marsh, K.A. & Joshi, C. (1994). Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments. Phys. Plasmas 1, 17531760.CrossRefGoogle Scholar
Ebrahim, N.A. (1994). Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76, 76457647.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kieselev, S., Gordienko, S., Lefebvre, Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.Google Scholar
Geddes, C.G.R., Toth, C.S., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Istomin, YA.N. & Leyser, T.B. (2003). Electron acceleration by cylindrical upper hybrid oscillations trapped in density irregularities in the ionosphere. Phys. Plasmas 10, 29622970.CrossRefGoogle Scholar
Joshi, C. (2007). The development of laser and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.Google Scholar
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51, 392395.Google Scholar
Kimura, W.D., Babzien, M., Ben-Zvi, I., Campbell, L.P., Cline, D.B., Dilley, C.E., Gallardo, J.C., Gottschalk, S.C., Kusche, K.P., Pantell, R.H., Pogorelsky, I.V., Quimby, D.C., Skaritka, J., Steinhauer, L.C., Yakimenko, V. & Zhou, F. (2004). Demonstration of high-trapping efficiency and narrow energy spread in a laser-driven accelerator. Phys. Rev. Lett. 92, 054801.CrossRefGoogle Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Sakamoto, W., Kodama, R., Taneka, K.A., Azumi, K., Norimatsu, T., Matsuoka, T., Fujita, H. & Yoshida, H. (2004). Electron acceleration in an ultraintense-laser-illuminated capillary. Phys. Rev. Lett. 92, 205002.CrossRefGoogle Scholar
Kong, Q., Miyazaki, S., Miyanaga, N. & Ho, Y.K. (2003). Electron bunch acceleration and trapping by the ponderomotive force of an intense short-pulse laser. Phys. Plasmas 10, 46054608.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.Google Scholar
Kumar, A. & Tripathi, V.K. (2004). Excitation of electron Bernstein waves by a gyrating relativistic electron beam in a plasma slab. Phys. Plasmas 11, 538541.CrossRefGoogle Scholar
Leemans, W.P., Catravas, P., Esarey, E., Geddes, C.G.R., Toth, C., Trines, R., Schroeder, C.B., Shadwick, B.A., Tilborg, J.V. & Faure, J. (2002). Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802.Google Scholar
Li, B., Ishiguro, S.M., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.Google Scholar
Lindberg, R.R., Charman, A.E. & Wurtele, J.S. (2004). Robust autoresonant excitation in the beat-wave accelerator. Phys. Rev. Lett. 93, 055001.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. (1986). Parametric instabilities in a magnetized plasma. Phys. Reports 130, 143216.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Meyer-Ter-Vehn, J. & Sheng, Z.M. (1999). On electron acceleration by intense laser pulses in the presence of a stochastic field. Phys. Plasma 6, 641644.CrossRefGoogle Scholar
Muggli, P., Blue, B.E.,Clayton, C.E., Deng, S., Decker, F.-J., Hogan, M.J., Huang, C., Iverson, R., Joshi, C., Katsouleas, T.C., Lee, S., Lu, W., Mash, K.A., Mori, W.B., ÒConnell, C.L., Raimondi, P., Siemann, R. & Walz, D. (2004). Meter-scale plasma-wakefield accelerator driven by a matched electron beam. Phys. Rev. Lett. 93, 014802.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 22, 407413.Google Scholar
Oieroset, M., Lin, R.P., Phan, T.D., Larson, D.E. & Bale, S.D. (2002). Evidence for electron acceleration up to ~300 keV in the magnetic reconnection diffusion region of earth's magnetotail. Phys. Rev. Lett. 89, 195001.CrossRefGoogle ScholarPubMed
Prasad, R., Singh, R. & Tripathi, V.K. (2009). Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27, 459464.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-Ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.Google Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Reitsma, A.J.W., Cairns, R.A., Bingham, R. & Jaroszynski, D.A. (2005). Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085004.Google Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma waves by two laser beams, Phys. Rev. Lett. 29, 701.Google Scholar
Ruhl, H. (1996). Uphil acceleration of electrons and secular fields in laser produced plasmas. Phys. Plasmas 3, 31293132.CrossRefGoogle Scholar
Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005.CrossRefGoogle ScholarPubMed
Sauerbrey, R. (1996). Acceleration in femtosecond laser-produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovonovic, M.S., Taguchi, T., Zhang, J. & Meyer-Ter-Vehn, J. (2002 a). Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.Google Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y.Nishihara, K. & Zhang, J. (2002 b). Generation of high-amplitude plasma waves for particle acceleration by cross-modulated laser wakefields. Phys. Plasmas 9, 31473153.CrossRefGoogle Scholar
Shevts, G. & Fisch, N.J. (1997). Beam-channeled laser-wakefield accelerator. Phys. Rev. E 55, 62976300.Google Scholar
Shvets, G., Fisch, N.J. & Pukhov, A. (2000). Acceleration and compression of charged particle bunches using counterpropagating laser beams. IEEE Trans. Plasma Sci. 28, 11851192.Google Scholar
Singh, K.P., Gupta, V.L., Bhasin, L. & Tripathi, V.K. (2003). Electron acceleration by a plasma wave in a sheared magnetic field. Phys. Plasmas 10, 14931499.CrossRefGoogle Scholar
Sugaya, R. (2004). Electron beam acceleration and potential formation induced by the Compton scattering of extraordinary waves. J. Plasma Physics 70, 331357.CrossRefGoogle Scholar
Suk, H. (2002). Electron acceleration based on self-trapping by plasma wake fields. J. Appl. Phys. 91, 487491.Google Scholar
Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R., Fischer, R. & Baine, M. (1997). Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4, 18891899.CrossRefGoogle Scholar
Tochitsky, S.YA., Narang, R., Filip, C.V., Musumeci, P., Clayton, C.E., Yoder, R.B., Marsh, K.A., Rosenzweig, J.B., Pellegrini, C. & Joshi, C. (2004). Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel. Phys. Rev. Lett. 92, 095004.CrossRefGoogle Scholar
Wu, D.J. & Chao, J.K. (2003). Auroral electron acceleration by dissipative solitary kinetic Alfven waves. Phys. Plasmas 10, 37873789.Google Scholar
Xie, B.-S., Aimidula, A., Niu, J.-S., Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.Google Scholar
Yugami, N., Kikuta, K. & Nishida, Y. (1996). Electron acceleration by a transverse electromagnetic wave supplemented with a crossed static magnetic field. Phys. Rev. Lett. 76, 1635.Google Scholar