Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:16:33.312Z Has data issue: false hasContentIssue false

Charge-state distributions of chlorine ions interacting with cold gas and with fully ionized plasma

Published online by Cambridge University Press:  09 March 2009

M. Chabot
Affiliation:
Institut de Physique Nucléaire, (GDR 918), Orsay (IN2P3), France
D. Gardès
Affiliation:
Institut de Physique Nucléaire, (GDR 918), Orsay (IN2P3), France
J. Kiener
Affiliation:
Institut de Physique Nucléaire, (GDR 918), Orsay (IN2P3), France
S. Damache
Affiliation:
Institut de Physique Nucléaire, (GDR 918), Orsay (IN2P3), France
B. Kubica
Affiliation:
Institut de Physique Nucléaire, (GDR 918), Orsay (IN2P3), France
C. Deutsch
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Orsay, France
G. Maynard
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Orsay, France
M. Pouey
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Orsay, France
W. André
Affiliation:
Groupe de Recherche sur I'Energétique et la Matière Ionisée, Orléans, France
C. Fleurier
Affiliation:
Groupe de Recherche sur I'Energétique et la Matière Ionisée, Orléans, France
D. Hong
Affiliation:
Groupe de Recherche sur I'Energétique et la Matière Ionisée, Orléans, France
K. Wohrer
Affiliation:
Groupe de Physique des Solides, Paris VI, France
D.H.H. Hoffmann
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Abstract

Charge transfer of 4.3 MeV/u chlorine ions passing through a discharge plasma target is used as a probe to determine the plasma density and the ratio of impurities inside the plasma column. Charge-state distributions of 2 MeV/u chlorine ions passing through the plasma are then measured and compared to corresponding measurements in the cold gas. Stopping power measurements are also performed in both cases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betz, H.D. 1972 Rev. Mod. Phys. 44, 465.CrossRefGoogle Scholar
Bimbot, R. et al. 1993 to be published.Google Scholar
Boggasch, E. et al. 1991 Phys. Rev. Lett 66, 1705.CrossRefGoogle Scholar
Chabot, M. et al. 1993 Riv. del Nuovo Cimento in press.Google Scholar
Deutsch, C. et al. 1989 Nucl. Inst. and Meth. in Phys. Res. A 278, 38.CrossRefGoogle Scholar
Dietrich, K.G. et al. 1992 Phys. Rev. Lett. 69, 3623.CrossRefGoogle Scholar
Fleurier, C. et al. 1991 Nucl. Inst. and Meth. in Phys. Res. B 61, 236.CrossRefGoogle Scholar
Gardès, D. et al. 1992 Part. Accel. 37, 361.Google Scholar
Gardès, D. et al. 1992 Phys. Rev. A 46, 5101.CrossRefGoogle Scholar
Gardès, D. et al. 1989 Rad. Eff. and Defects in Solids 110, 49.CrossRefGoogle Scholar
Gryzinski, M. 1965 Phys. Rev. A 305, 138.Google Scholar
Hong, D. 1991 PHD Thesis, GREMI-Orléans.Google Scholar
Schlachter, A. et al. 1983 Phys. Rev. A 27, 3372.CrossRefGoogle Scholar
Shakeshast, R. & Spruchl, L. 1978 J. Phys. B 11, L457.CrossRefGoogle Scholar
Thumm, U. et al. 1989 J. Phys. B 21, 833.CrossRefGoogle Scholar