Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T02:12:54.576Z Has data issue: false hasContentIssue false

Comparison between illumination model and hydrodynamic simulation for a direct drive laser irradiated target

Published online by Cambridge University Press:  12 September 2014

M. Temporal*
Affiliation:
Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, Cachan Cedex, France
B. Canaud
Affiliation:
CEA, DIF, Arpajon Cedex, France
W.J. Garbett
Affiliation:
AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
R. Ramis
Affiliation:
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: M. Temporal, Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex, France. E-mail: mauro.temporal@hotmail.com

Abstract

A spherical target irradiated by laser beams located at 49o and 131° with respect to the polar axis has been considered. The illumination model has been used to evaluate the irradiation non-uniformity assuming circular and elliptical super-Gaussian laser intensity profiles and the irradiation scheme has been optimized by means of the polar direct drive technique. A parametric study has been performed providing the irradiation non-uniformity as a function of the polar direct drive displacement and of the laser intensity profile parameters. Moreover, two-dimensional axis-symmetric hydrodynamic simulations have been performed for a plastic sphere irradiated by laser beams characterized by a constant flat temporal power pulse. In these simulations, the front of the inward shock wave has been tracked providing the time-evolution of any non-uniformity. The results provided by the two methods — illumination model and hydrodynamic data — have been compared and it is found that the illumination model reproduces the main behavior exhibited by the hydrodynamic data. The two models provide compatible values for the optimum polar direct drive parameter and similar optimal super-Gaussian profiles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1987). The physical basis for numerical fluid simulations in laser fusion. Plasma Phys. Contr. Fusion 29, 15351604.Google Scholar
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Press.Google Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.Google Scholar
Bodner, S.E., Colombant, D.G., Schmitt, A.J., Gardner, J.H., Lehmberg, R.H. & Obenschain, S.P. (2002). Overview of new high gain target design for a laser fusion power plant. Fusion Engin. Design 60, 9398.Google Scholar
Brandon, V., Canaud, B., Primut, M., Laffite, S. & Temporal, M. (2013). Marginally igniting direct-drive target designs for the laser megajoule. Laser Part. Beam 31, 141.Google Scholar
Canaud, B., Fortin, X., Dague, N. & Bocher, J.L. (2002). Laser megajoule irradiation uniformity for direct drive. Phys. Plasmas 9, 42524260.Google Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004 a). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109114.Google Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S. & Schiavi, A. (2004b). High-gain direct-drive target design for the laser megajoule. Nucl. Fusion 44, 11181129.Google Scholar
Canaud, B., Garaude, F., Ballereau, P., Bourgade, J.L., Clique, C., Dureau, D., Houry, M., Jaouen, S., Jourdren, H., Lecler, N., Masse, L., Masson, A., Quach, R., Piron, R., Riz, D., Van Der Vliet, J., Temporal, M., Delettrez, J.A. & Mckenty, P.W. (2007 a). High-gain direct-drive inertial confinement fusion for the laser meajoule: Recent progress. Plasma Phys. Contr. Fusion 49, B601.Google Scholar
Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van Der Vliet, J. (2007 b). High-gain direct-drive laser fusion with indirect drive beam layout of laser megajoule. Nucl. Fusion 47, 16521655.Google Scholar
Canaud, B., Brandon, V., Laffite, S. & Temporal, M. (2012). 2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule. Laser Part. Beams 30, 183189.Google Scholar
Cavailler, C. (2005). Inertial fusion with the LMJ. Plasma Phys. Contr. Fusion 47, B389.Google Scholar
Craxton, R.S., Marshall, F.J., Bonino, M.J., Epstein, R., Mckenty, P.W., Skupsky, S., Deletrez, J.A., Igumenshchev, I.W., Jacobs-Perkins, D.W., Knauer, J.P., Marozas, J.A., Radha, P.B. & Seka, W. (2005). Polar direct drive: Proof-of-principle experiments on OMEGA and prospects for ignition on the National Ignition Facility. Phys. Plasmas 12, 056304.Google Scholar
Hopps, N., Danson, C., Duffield, S., Egan, D., Elsmere, S., Girling, M., Harvey, E., Hillier, D., Norman, M., Parker, S., Treadwell, P., Winter, D. & Bett, T. (2013). Overview of laser systems for the Orion facility at the AWE. Appl. Opt. 52, 3597.Google Scholar
Kyrala, G.A., Seifter, A., Kline, J.L., Goldman, S.R., Batha, S.H. & Hoffman, N.M. (2011). Tuning indirect-drive implosions using cone power balance. Phys. Plasmas 18, 072703.CrossRefGoogle Scholar
Landen, O.L., Edwards, J., Haan, S.W., Robey, H.F., Milovich, J., Spears, B.K., Weber, S.V., Clark, D.S., Lindl, J.D., Macgowan, B.J., Moses, E.I., Atherton, J., Amendt, P.A., Boehly, T.R., Bradley, D.K., Braun, D.J., Callahan, D.A., Celliers, P.M., Collins, J.W., Dewald, E.L., Divol, L., Frenje, J.A., Glenzer, S.H., Hamza, A., Hammel, B.A., Hicks, D.G., Hoffman, N., Izumi, N., Jones, O.S., Kilkenny, J.D., Kirkwood, R.K., Kline, J.L., Kyrala, G.A., Marinak, M.M., Meezan, N., Meyerhofer, D.D., Michel, P., Munro, D.H., Olson, R.E., Nikroo, A., Regan, S.P., Suter, L.J., Thomas, C.A. & Wilson, D.C. (2011). Capsule implosion optimization during the indirect-drive National Ignition Campaign. Phys. Plasmas 18, 051002.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 2, 339.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & Nic, Team (2014). Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501.Google Scholar
Lion, C. (2010). The LMJ program: an overview. J. Phys.: Confer. Ser. 244, 012003.Google Scholar
Mckenty, P.W., Sangster, T.C., Alexander, M., Betti, R., Craxton, R.S., Deletrez, J.A., Elasky, L., Epstein, R., Frank, A., Yu. Glebov, V., Goncharov, V.N., Harding, D.R., Jin, S., Knauer, J.P., Keck, R.L., Loucks, S.J., Lund, L.D., Mccrory, R.L., Marshall, F.J., Meyerhofer, D.D., Regan, S.P., Radha, P.B., Roberts, S., Seka, W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Thorp, K.A., Wozniak, M., Frenje, J.A., Li, C.K., Petrasso, R.D., Seguin, F.H., Fletcher, K.A., Paladino, S., Freeman, C., Izumi, N., Koch, J.A., Lerche, R.A., Moran, M.J., Phillips, T.W., Schmid, G.J. & Sorce, C. (2004). Direct-drive cryogenic target implosion performance on OMEGA. Phys. Plasmas 11, 290.Google Scholar
Miller, G.H., Moses, E.I. & Wuest, C.R. (2004). The National Ignition Facility: Enabling fusion ignition for the 21st century. Nucl. Fusion 44, S228.Google Scholar
Moses, E.I., Boyd, R.N., Remington, B.A., Keane, C.J. & Al-Ayat, R. (2009). The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas 16, 041006.Google Scholar
Murakami, M., Nishihara, K. & Azechi, H. (1993). Irradiation non-uniformity due to imperfections of laser beams. J. Appl. Phys. 74, 802808.CrossRefGoogle Scholar
Murakami, M. (1995). Irradiation system based on dodecahedron for inertial confinement fusion. Appl. Phys. Lett. 66, 1587.Google Scholar
Murakami, M., Sarukura, N., Azechi, H., Temporal, M. & Schmitt, A.J. (2010). Optimization of irradiation configuration in laser fusion utilizing self-organizing electrodynamic system. Phys. Plasmas 17, 082702.Google Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nat. 239, 139142.Google Scholar
Schmitt, A.J. (1984). Absolutely uniform illumination of laser fusion pellets. Appl. Phys. Lett. 44, 399401.Google Scholar
Skupsky, S. & Lee, K. (1983). Uniformity of energy deposition for laser driven fusion. J. Appl. Phys. 54, 36623671.Google Scholar
Skupsky, S., Marozas, J.A., Craxton, R.S., Betti, R., Collins, T.J.B., Deletrez, J.A., Goncarov, V.N., Mckenty, P.W., Radha, P.B., Knauer, J.P., Marshall, F.J., Harding, D.R., Kilkenny, J.D., Meyerhofer, D.D., Sangster, T.C. & Mccrory, R.L. (2004). Polar direct drive on the National Ignition Facility. Plasma Phys. 11, 2763.Google Scholar
Temporal, M. & Canaud, B. (2009). Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule. Euro. Phys. J. D 55, 139.Google Scholar
Temporal, M., Canaud, B. & Le Garrec, B.J. (2010 a). Irradiation uniformity and zooming performances for a capsule directly driven by a 32 × 9 laser beams configuration. Phys. Plasmas 17, 022701.Google Scholar
Temporal, M., Canaud, B., Laffite, S., Le Garrec, B.J. & Murakami, M. (2010 b). Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation. Phys. Plasmas 17, 064504.Google Scholar
Temporal, M., Ramis, R., Canaud, B., Brandon, V., Laffite, S. & Le Garrec, B.J. (2011). Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme. Plasma Phys. Contr. Fusion 53, 124008.Google Scholar
Temporal, M. & Canaud, B. (2011). Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams. Euro. Phys. J. D 65, 447.Google Scholar
Temporal, M., Canaud, B., Garbett, W.J., Philippe, F. & Ramis, R. (2013). Polar direct drive illumination uniformity provided by the Orion facility. Euro. Phys. J. D 67, 205.Google Scholar
Temporal, M., Canaud, B., Garbett, W.J. & Ramis, R. (2014 a). Numerical analysis of the direct drive illumination uniformity for the laser megajoule facility. Phys. Plasmas 21, 012710.Google Scholar
Temporal, M., Canaud, B., Garbett, W.J. & Ramis, R. (2014 b). Irradiation uniformity at the laser megajoule facility in the context of the shock ignition scheme. Hi. Power Laser Sci. Engin. 2, e8.Google Scholar