Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T06:54:05.959Z Has data issue: false hasContentIssue false

Coronal fluid-dynamics in laser fusion

Published online by Cambridge University Press:  09 March 2009

Juan R. Sanmartín
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica, 28040-Madrid

Abstract

The fluid-dynamics of the corona ejected by laser-fusion targets in the direct-drive approach (thermal radiation and atomic physics unimportant) is discussed. A two-fluid model involves inverse bremsstrahlung absorption, refraction, different ion and electron temperatures with energy exchange, different ion and electron velocities and magnetic field generation, and their effect on ion-electron friction and heat flux. Four dimensionless parameters determine coronal regimes for one-dimensional flows under uniform irradiation. One additional parameter is involved in two-dimensional problems, including the stability of one-dimensional flows, and the smoothing of non-uniform driving.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albritton, J. R. et al. 1986 Phys. Rev. Lett. 57, 1887.CrossRefGoogle Scholar
Barrero, A. & Sanmartín, J. R. 1980 Plasma Phys. 22, 617CrossRefGoogle Scholar
Braginskii, S. I. 1965 in: Transport Processes in a Plasma, Reviews of Plasma Physics, Vol. 1, ed. Leontovich, M. A. (Consultants Bureau, New York).Google Scholar
Friedberg, J. P. et al. 1972 Phys. Rev. Lett. 28, 795.CrossRefGoogle Scholar
Johnston, T. W. & Dawson, J. 1973 Phys. Fluids 16, 722.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media (Pergamon, Oxford).Google Scholar
Langdon, A. B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
Luciani, J. F. et al. 1985 Phys. Fluids 28, 835.CrossRefGoogle Scholar
Montanes, J. L. & Sanmartin, J. R. 1980 Phys. Fluids 23, 650.CrossRefGoogle Scholar
Nicolas, J. A. 1986 Plasma Phys. and Contr. Fus. 28, 1441.CrossRefGoogle Scholar
Nicolas, J. A. & Sanmartín, J. R. 1985 Plasma Phys. 27, 279.Google Scholar
Perez-Saborid, M. et al. 1988 (submitted to Phys. Fluids).Google Scholar
Pert, G. J. 1987, Laser and Particle Beams 5, 643.CrossRefGoogle Scholar
Pomraning, G. C. 1973 The Equations of Radiation Hydrodynamics (Pergamon, Oxford)Google Scholar
Ramis, R. & Sanmartín, J. R. 1983 Nucl. Fus. 23, 739.CrossRefGoogle Scholar
Sanmartín, J. R. & Barrero, A. 1978a, b Phys. Fluids 21, 1957, 1967.Google Scholar
Sanmartín, J. R. et al. 1983 Phys. Fluids 26, 2754.CrossRefGoogle Scholar
Sanmartín, J. R. et al. 1985a Phys. Fluids 28, 2282.CrossRefGoogle Scholar
Sanmartín, J. R. et al. 1985b Plasma Phys. 27, 983.Google Scholar
Sanmartín, J. R. et al. 1987 Phys. Lett. A124, 81.CrossRefGoogle Scholar
Sanz, J. et al. 1981 Phys Fluids 24, 2098.CrossRefGoogle Scholar
Sanz, J. & Sanmartín, J. R. 1983 Phys. Fluids 26, 3370.CrossRefGoogle Scholar
Sanz, J. et al. 1988a Laser and Particle Beams 6, 305.CrossRefGoogle Scholar
Sanz, J. et al. 1988b Phys. Fluids 31, 2320.CrossRefGoogle Scholar
Sanz, J. 1988 Plasma Phys. and Contr. Fus. 30, 1813.CrossRefGoogle Scholar