Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:41:47.198Z Has data issue: false hasContentIssue false

Density Expansion of the Equation of State for a Multicomponent Quantum Plasma

Published online by Cambridge University Press:  09 March 2009

J. Riemann
Affiliation:
Institut für Physik der Ernst-Moritz-Amdt-Universität, D-17487 Greifswald, Germany
M. Schlanges
Affiliation:
Institut für Physik der Ernst-Moritz-Amdt-Universität, D-17487 Greifswald, Germany
W.D. Kraeft
Affiliation:
Institut für Physik der Ernst-Moritz-Amdt-Universität, D-17487 Greifswald, Germany

Abstract

Within the grand canonical ensemble, we use a general quantum statistical formula and the thermodynamic Green's functions to derive a perturbation expansion for the pressure of a multicomponent plasma. Different contributions to the equation of state (EOS) are given analytically and by numerical calculations. Exact results for the EOS are presented in the shape of a low-density expansion up to the order (ne2)5/2, including ladder-type contributions and “beyond Montroll–Ward” terms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alastuey, A. 1993 In Proc. IAU Colloq. No. 147 (Saint-Malo, 1993), (Cambridge Univ. Press, Cambridge), p. 43.Google Scholar
Alastuey, A. & Perez, A. 1992 Europhys. Lett. 20, 1924.CrossRefGoogle Scholar
Bernu, B. et al. 1984 Phys. Lett. 100A, 28.Google Scholar
Christensen-Dalsgaard, J. & Däppen, W. 1992 Astron. Astrophys. Rev. 4, 267.CrossRefGoogle Scholar
Däppen, W. 1993 In Proc. IAU Colloq. No. 147 (Saint-Malo, 1993), (Cambridge Univ. Press, Cambridge), p. 368.Google Scholar
Dewitt, H.E. et al. 1995 Phys. Utters A 197, 326.CrossRefGoogle Scholar
Ebeling, W. 1993 In Proc. VII. Int. Workshop on the Physics of Nonideal Plasma, (Markgrafenheide, 1993) (Akademie Verlag, Berlin), p. 492.Google Scholar
Ebeling, W. et al. 1976 Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie Verlag, Berlin).Google Scholar
Ichimaru, S. et al. 1987 Phys. Rep. 149, 91.CrossRefGoogle Scholar
Kraeft, W.D. & Jakubowski, P. 1978 Ann. Physik 35, 294.Google Scholar
Kraeft, W.D. et al. 1986 Quantum Statistics of Charged Particle Systems, (Plenum, London).CrossRefGoogle Scholar
Pierleoni, C. et al. 1994 Phys. Rev. Lett. 73, 2145.CrossRefGoogle Scholar
Riemann, J. et al. 1995 Physica A 219, 423.CrossRefGoogle Scholar
Riemann, J. et al. 1996 In Proc. Int. Conf. Physics of Strongly Coupled Plasmas (Binz, 1995), Kraeft, W.D. and Schlanges, M., eds., (World Scientific, Singapore), p. 82.Google Scholar
Rogers, F.J. 1993 In Proc. IAU Colloq. No. 147 (Saint-Malo, 1993) (Cambridge Univ. Press, Cambridge), p. 16.Google Scholar
Stolzmann, W. et al. 1989 Contrib. Plasma Phys. 29, 377.CrossRefGoogle Scholar
Tanaka, S. et al. 1990 Phys. Rev. A 41, 5616.CrossRefGoogle Scholar