Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:58:50.240Z Has data issue: false hasContentIssue false

Density gradient effects on beam plasma linear instabilities for fast ignition scenario

Published online by Cambridge University Press:  08 June 2006

ANTOINE BRET
Affiliation:
ETSI Industriales, Universidad Castilla la Mancha, Ciudad Real, Spain
CLAUDE DEUTSCH
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas (CNRS-UMR 8578), Université Paris XI, Orsay cedex, France

Abstract

In the fast ignition scenario for inertial fusion, a relativistic electron beam is supposed to travel from the side of the fusion pellet to its core. One one hand, a relativistic electron beam passing through a plasma is a highly unstable system. On the other hand, the pellet core is denser than its side by four orders of magnitude so that the beam makes its way through a important density gradient. We here investigate the effect of this gradient on the instabilities. It is found that they should develop so early that gradient effects are negligible in the linear phase.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Breizman, B. & Ryutov, D. (1970). Influence of inhomogeneity of plasma on relaxation of an ultrarelativistic electron beam. JETP Lett. USSR 11, 421.Google Scholar
Bret, A. & Deutsch, C. (2005). Hierarchy of beam plasma instabilities up to high beam densities for fast ignition scenario. Phys. Plasmas 12, 082704.Google Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2005a). Electromagnetic instabilities for relativistic beam-plasma interaction in whole k space: Nonrelativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403.Google Scholar
Bret, A., Firpo, M.-F. & Deutsch, C. (2005b). Bridging the gap between two-stream and filamentation instabilities. Laser Part. Beams 23, 375.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 577.CrossRefGoogle Scholar
Gus'Kov, S. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255.CrossRefGoogle Scholar
Hammer, D. & Rostoker, N. (1970). Propagation of high current relativistic electron beams. Phys. Fluids 13, 1831.CrossRefGoogle Scholar
Honrubia, J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 135.CrossRefGoogle Scholar
Honrubia, J., Kaluza, M., Schreiber, J., Tsakiris, G. & Meyer-ter-Vehn, J. (2005). Laser-driven fast-electron transport in preheated foil targets. Phys. Plasmas 12, 052708.Google Scholar
Mason, R. (2006). Heating mechanisms in short-pulse laser-driven cone targets. Phys. Rev. Lett. 96, 035001.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with super intense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157.CrossRefGoogle Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez-Val, J., Perlado, J. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 43.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar