Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T07:22:45.616Z Has data issue: false hasContentIssue false

Determination of corona, LTE, and NLTE regimes of optically thin carbon plasmas

Published online by Cambridge University Press:  04 January 2008

J.M. Gil*
Affiliation:
Departamento de Física de la Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Spain Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
R. RodrÍguez
Affiliation:
Departamento de Física de la Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Spain Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
R. Florido
Affiliation:
Departamento de Física de la Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Spain Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
J.G. Rubiano
Affiliation:
Departamento de Física de la Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Spain Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
P. Martel
Affiliation:
Departamento de Física de la Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Spain Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
E. MÍnguez
Affiliation:
Instituto de Fusión Nuclear, Denim, Universidad Politécnica de Madrid, Madrid, Spain
*
Address corresponce and reprint request to: J.M. Gil, Departamento de Física de laUniversidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: jmgil@dfis.ulpgc.es

Abstract

In this work is accomplished the determination of the corona, local and non-local thermodynamic equilibrium regimes for optically thin carbon plasmas in steady state, in terms of the plasma density and temperature using the ABAKO code. The determination is made through the analysis of the plasma average ionization and ion and level populations. The results are compared whit those obtained applying Griem's criterion. Finally, it is made a brief analysis of the effects of the calculation of level populations assuming different plasma regimes in radiative properties, such as emissivities and opacities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bowen, C., Lee, R.W. & Ralchenko, Y. (2006). Comparing plasma population kinetics code: Review of the NLTE-3 Kinetics Workshop. J. Quant. Spectrosc. Radiat. Trans. 99, 102119.CrossRefGoogle Scholar
Colgan, J., Fontes, C.J. & Abdallah, J. Jr. (2006). Collisional-radiative studies of carbon plasmas. High Energy Density Phys. 2, 9096.CrossRefGoogle Scholar
Filevich, J., Grava, J., Purvis, M., Marconi, M.C., Rocca, J.J., Nilsen, J., Dunn, J. & Johnson, W.R. (2007). Multiply ionized carbon plasmas with index of refraction greater than one. Laser Part. Beams 25, 4751.CrossRefGoogle Scholar
Florido, R., Gil, J.M., Rodríguez, R., Rubiano, J.G., Martel, P. & Mínguez, E. (2005). Atom3R, a code for calculation of NLTE plasma populations. Low and high density limits behaviour. Proc. 28th European Conf. on Laser Interaction with Matter, pp. 389413. Rome, Italy.Google Scholar
Gil, J.M., Martel, P., Mínguez, E., Rubiano, J.G., Rodríguez, R. & Ruano, F.H. (2002). An effective analytical potential including plasma effects. J. Quant. Spectrosc. Radiat. Trans. 75, 539557.CrossRefGoogle Scholar
Gonzalez, M., Stehle, C., Audit, E., Busquet, M., Rus, B., Thais, F., Acef, O., Barroso, P., Bar-Shalom, A., Bauduin, D., Kozlova, M., Lery, T., Madouri, A., Mocek, T. & Polan, J. (2006). Astrophysical radiative shocks: From modeling to laboratory experiments. Laser Part. Beams 24, 535540.CrossRefGoogle Scholar
Griem, H.R. (1963). Validity of local thermal equilibrium in plasma spectroscopy. Phys. Rev. 131, 11701176.CrossRefGoogle Scholar
Gu, M.F. (2003). Indirect X-ray line-formation processes in iron L-shell ions. Astrophys. J. 582, 12411250.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Maksimchuk, A., Nantel, M., Ma, G., Gu, S., Cote, C.Y., Umstadter, D., Pikuz, S.A., Skobelev, I.Y.U. & Faenov, A.Y. (2000). X-ray radiation from matter in extreme conditions. J. Quant. Spectrosc. Radiat. Trans. 65, 367385.CrossRefGoogle Scholar
Mancini, R., Joyce, R.F. & Hooper, C.F. (1987). Escape factors for Stark-broadened line profiles. J. Phys. B.: At. Mol. Phys. 20, 29752987.CrossRefGoogle Scholar
Martel, P., Doreste, L., Mínguez, E. & Gil, J.M. (1995). A parametric potential for ions from helium to iron isoelectronic-sequences. J. Quant. Spectrosc. Radiat. Trans. 54, 621636.CrossRefGoogle Scholar
Mínguez, E., Rodríguez, R., Gil, J.M., Sauvan, P., Florido, R., Rubiano, J.G., Martel, P. & Mancini, R. (2005). Opacities and line transfer in high density plasmas. Laser Part. Beams 23, 199203.CrossRefGoogle Scholar
Mosher, D. (1974). Coronal equilibrium of high-atomic-number plasmas. Phys. Rev. A. 10, 6, 23302334.CrossRefGoogle Scholar
Nardi, E., Fisher, D.V., Roth, M., Blazevic, A. & Hoffmann, D.H.H. (2006). Charge state of Zn projectile ions in partially ionized plasma: Simulations. Laser Part. Beams 24, 131141.CrossRefGoogle Scholar
Rodríguez, R., Rubiano, J.G., Gil, J.M., Martel, P. & Mínguez, E. (2002 a). Fast calculation of plasma prominent atomic magnitudes by using a new analytical potential for excited configurations. Laser Part. Beams 20, 139144.CrossRefGoogle Scholar
Rodríguez, R., Gil, J.M., Florido, R., Rubiano, J.G., Martel, P. & Mínguez, E. (2002 b). Development of an analytical potential to include excited configurations J. Quant. Spectrosc. Radiat. Trans. 75, 723739.CrossRefGoogle Scholar
Rodríguez, R., Gil, J.M., Florido, R., Rubiano, J.G., Martel, P. & Mínguez, E. (2005). Analytical potential for determining atomic properties of ions in plasmas for a wide range of plasma coupling parameters. An application to calculate total photoionization cross section. Proc. 32nd Plasma Physics Conference. pp 5.123. Tarragona, Spain.Google Scholar
Rodríguez, R., Gil, J.M., Florido, R., Rubiano, J.G., Martel, P. & Mínguez, E. (2006). Code to calculate optical properties for plasmas in a wide range of densities. J. Phys. IV 133, 981984.Google Scholar
Rubiano, J.G., Rodríguez, R., Gil, J.M., Martel, P. & Mínguez, E.J. (2002 a). Calculation of the ionization state for LTE plasmas using a new relativistic-screened hydrogenic model based on analytical potentials. Laser Part. Beams 20, 145151.CrossRefGoogle Scholar
Rubiano, J.G., Rodríguez, R., Gil, J.M., Ruano, F.H., Martel, P. & Mínguez, E. (2002 b). A screened hydrogenic model using analytical potentials. J. Quant. Spectrosc. Radiat. Trans. 72, 575588.CrossRefGoogle Scholar
Rubiano, J.G., Florido, R., Bowen, C., Lee, R.W. & Ralchenko, Y. (2007). Review of the 4th NLTE code comparison workshop. High Energy Density Phys. 3, 225232.CrossRefGoogle Scholar
Salzmann, D. (1998). Atomic Physics in Hot Plasmas. Birman, J., Edwards, S.F., Friend, R.H., Llewellyn Smith, C.H., Rees, M., Sherrington, D., Veneziano, G., Eds. New York: Oxford University Press.CrossRefGoogle Scholar
Skinner, C.H. & Federeci, G. (2006). Is carbon a realistic choice for ITER's divertor? Phys. Script. T124, 1822.CrossRefGoogle Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Weaver, J.L., Busquet, M., Columbant, D.G., Mostovych, A.N., Feldman, U., Klapisch, M., Seely, J.F., Brown, C. & Holland, G. (2005). Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the nike laser. Phys. Rev. Lett. 94, 04500210450024.Google ScholarPubMed
Zeng, J & Yuan, J. (2002). Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasmas: a systematic study. Phys. Rev. E. 66, 01640110164019.CrossRefGoogle ScholarPubMed