Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T06:25:21.778Z Has data issue: false hasContentIssue false

Development of mini-undulators for a table-top free-electron laser

Published online by Cambridge University Press:  05 November 2018

G. Petrov
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA
J. Davis
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA
W. Schumaker
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
M. Vargas
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
V. Chvykov
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
B. Hou
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
A. Maksimchuk
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
V. Yanovsky
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
A. G. R. Thomas
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
K. Krushelnick*
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
A. Garraud
Affiliation:
University of Florida, Gainesville, FL 32611, USA
D. P. Arnold
Affiliation:
University of Florida, Gainesville, FL 32611, USA
B. A. Peterson
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104, USA
M. G. Allen
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104, USA
*
Author for correspondence: K. Krushelnick, Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA, E-mail: kmkr@umich.edu

Abstract

The development of laser wakefield accelerators (LWFA) over the past several years has led to an interest in very compact sources of X-ray radiation – such as “table-top” free electron lasers. However, the use of conventional undulators using permanent magnets also implies system sizes which are large. In this work, we assess the possibilities for the use of novel mini-undulators in conjunction with a LWFA so that the dimensions of the undulator become comparable with the acceleration distances for LWFA experiments (i.e., centimeters). The use of a prototype undulator using laser machining of permanent magnets for this application is described and the emission characteristics and limitations of such a system are determined. Preliminary electron propagation and X-ray emission measurements are taken with a LWFA electron beam at the University of Michigan.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayvazyan, V, Baboi, N, Bohnet, I, Brinkmann, R, Castellano, M, Castro, P, Catani, L, Choroba, S, Cianchi, A, Dohlus, M, Edwards, HT, Faatz, B, Fateev, AA, Feldhaus, J, Flöttmann, K, Gamp, A, Garvey, T, Genz, H, Gerth, C, Gretchko, V, Grigoryan, B, Hahn, U, Hessler, C, Honkavaara, K, Hüning, M, Ischebeck, R, Jablonka, M, Kamps, T, Körfer, M, Krassilnikov, M, Krzywinski, J, Liepe, M, Liero, A, Limberg, T, Loos, H, Luong, M, Magne, C, Menzel, J, Michelato, P, Minty, M, Müller, U-C, Nölle, D, Novokhatski, A, Pagani, C, Peters, F, Pflüger, J, Piot, P, Plucinski, L, Rehlich, K, Reyzl, I, Richter, A, Rossbach, J, Saldin, EL, Sandner, W, Schlarb, H, Schmidt, G, Schmüser, P, Schneider, JR, Schneidmiller, EA, Schreiber, H-J, Schreiber, S, Sertore, D, Setzer, S, Simrock, S, Sobierajski, R, Sonntag, B, Steeg, B, Stephan, F, Sytchev, KP, Tiedtke, K, Tonutti, M, Treusch, R, Trines, D, Türke, D, Verzilov, V, Wanzenberg, R, Weiland, T, Weise, H, Wendt, M, Will, I, Wolff, S, Wittenburg, K, Yurkov, MV and Zapfe, K (2002) Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Physical Review Letters 88, 104802.Google Scholar
Bonifacio, R, Casagrande, F, Cerchioni, G, De Salvo Souza, L, Pierini, P and Piovella, N (1990) Physics of the high-gain FEL and superradiance. Rivista del Nuovo Cimento 13, 1.Google Scholar
Corde, S, Ta Phuoc, K, Lambert, G, Fitour, R, Malka, V and Rousse, A (2013) Femtosecond x rays from laser-plasma accelerators. Reviews of Modern Physics 85, 1.Google Scholar
Deacon, DAG, Elias, LR, Madey, JMJ, Ramian, GJ, Schwettman, HA and Smith, TI (1977) First operation of a free-electron laser. Physical Review Letters 38, 892.Google Scholar
Di Piazza, A, Müller, AC, Hatsagortsyan, KZ and Keitel, CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Reviews of Modern Physics 84, 1177.Google Scholar
Eichner, T, Gruner, F, Becker, S, Fuchs, M, Habs, D, Weingartner, R, Schramm, U, Backe, H, Kunz, P and Lauth, W (2007) Miniature magnetic devices for laser-based, table-top free-electron lasers. Physical Review Special Topics Accelerated And Beams 10, 082401.Google Scholar
Faure, J, Gilnec, Y, Pukhov, A, Kiselev, S, Gordienko, S, Lefebvre, E, Rousseau, J-P, Burgy, F and Malka, V (2004) A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.Google Scholar
Fuchs, M, Weingartner, R, Popp, A, Major, Z, Becker, S, Osterhoff, J, Cortrie, I, Zeitler, B, Hörlein, R, Tsakiris, GD, Schramm, U, Rowlands-Rees, TP, Hooker, SM, Habs, D, Krausz, F, Karsch, S and Grüner, F (2009) Laser-driven soft-X-ray undulator source. Nature Physics 5, 826.Google Scholar
Geddes, CGR, Toth, C, van Tilborg, J, Esarey, E, Schroeder, CB, Bruhwiler, D, Nieter, C, Cary, J and Leemans, WP (2004) High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.Google Scholar
Grüner, F, Becker, S, Schramm, U, Eichner, T, Fuchs, M, Weingartner, R, Habs, D, Meyer-ter-Vehn, J, Geissler, M, Ferrario, M., Serafini, L, van der Geer, B, Backe, H, Lauth, E and Reiche, S (2007) Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Applied Physics B: Photophysics and Laser Chemistry 86, 431.Google Scholar
Huang, Z and Kim, KJ (2007) Review of x-ray free-electron laser theory. Physical Review Special Topics Accelerated And Beams 10, 034801.Google Scholar
Jackson, JD (2001) Classical Electrodynamics. 3rd Edn. New York: Wiley.Google Scholar
Khan, S (2008) Free electron lasers. Journal of Modern Optics 55, 3469.Google Scholar
Kneip, S, McGuffey, C, Martins, JL, Martins, SF, Bellei, C, Chvykov, V, Dollar, F, Fonseca, R, Huntington, C, Kalintchenko, G, Maksimchuk, A, Mangles, SPD, Matsuoka, T, Nagel, SR, Palmer, CAJ, Schreiber, J, Ta Phuoc, K, Thomas, AGR, Yanovsky, V, Silva, LO, Krushelnick, K and Najmudin, Z (2010) Bright spatially coherent synchrotron X-rays from a table-top source. Nature Physics 6, 980.Google Scholar
Maier, AR, Meseck, A, Reiche, S, Schroeder, CB, Seggebrock, T and Gruner, F (2012) Demonstration scheme for a laser-plasma driven free-electron laser. Physical Review X 2, 031019.Google Scholar
Mangles, SPD, Murphy, CD, Najmudin, Z, Thomas, AGR, Collier, JL, Dangor, AE, Foster, PS, Divall, EJ, Gallacher, JG, Hooker, CJ, Jaroszynski, DA, Langley, AJ, Mori, WB, Norreys, PA, Tsung, FS, Viskup, R, Walton, BR and Krushelnick, K (2004) Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535.Google Scholar
Mangles, SPD, Walton, BR, Najmudin, Z, Dangor, AE, Krushelnick, K, Malka, V, Manclossi, M, Lopes, N, Carias, C, Mendes, G and Dorchies, F (2006) Table-top laser-plasma acceleration as an electron radiography source. Laser and Particle Beams 24, 185.Google Scholar
McNeil, BWJ and Thompson, NR (2010) X-ray free-electron lasers. Nature Photonics 4, 814.Google Scholar
Nakajima, K (2008) Compact X-ray sources—Towards a table-top free-electron laser. Nature Physics 4, 92.Google Scholar
Peterson, BA, Oniku, OD, Patterson, WC, Le Roy, D, Garraud, A, Herrault, F, Dempsey, NM, Arnold, DP and Allen, MG (2014) Technology development for short-period magnetic undulators. Physics Procedia 52, 36.Google Scholar
Saldin, EL, Schneidmiller, EA and Yurkov, MV (2000) The Physics of Free Electron Lasers. Berlin: Springer-Verlag.Google Scholar
Schlenvoight, HP, Haupt, K, Debus, A, Budde, F, Jäckell, O, Pfotenhauer, S, Schwoerer, H, Gallagher, JG, Brunetti, E, Shanks, RP, Wiggins, SM and Jaroszynski, DA (2008) A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Physics 4, 130.Google Scholar
Schmuser, P, Dohlus, M and Rossbach, J (2008) Ultraviolet and Soft X-Ray Free-Electron Lasers. Introduction to Physical Principles, Experimental Results, Technological Challenges. Berlin: Springer-Verlag.Google Scholar
Tajima, T and Dawson, J (1979) Laser electron-accelerator. Physical Review Letters 43, 267.Google Scholar
Tanaka, H, Yabashi, M, Ishikawa, T, Aoyagi, H, Asaka, T, Asano, Y, Azumi, N, Bizen, T, Ego, H, Fukami, K, Fukui, T, Furukawa, Y, Goto, S, Hanaki, H, Hara, T, Hasegawa, T, Hatsui, T, Higashiya, A, Hirono, T, Hosoda, N, Ishii, M, Inagaki, T, Inubushi, Y, Itoga, T, Joti, Y, Kago, M, Kameshima, T, Kimura, H, Kirihara, Y, Kiyomichi, A, Kobayashi, T, Kondo, C, Kudo, T, Maesaka, H, Marechal, XM, Masuda, T, Matsubara, S, Matsumoto, T, Matsushita, T, Matsui, S, Nagasono, M, Nariyama, N, Ohashi, H, Ohata, T, Ohshima, T, Ono, S, Otake, Y, Saji, C, Sakurai, T, Sato, T, Sawada, K, Seike, T, Shirasawa, K, Sugimoto, T, Suzuki, S, Takahashi, S, Takebe, H, Takeshita, K, Tamasaku, K, Tanaka, H, Tanaka, R, Tanaka, T, Togashi, T, Togawa, K, Tokuhisa, A, Tomizawa, H, Tono, K, Wu, S, Yabashi, M, Yamaga, M, Yamashita, A, Yanagida, K, Zhang, C, Shintake, T, Kitamura, H and Kumagai, N (2012) A compact X-ray free-electron laser emitting in the sub-angstrom region. Nature Photonics 6, 540.Google Scholar
Xie, M (2000) Exact and variational solutions of 3D eigenmodes in high gain FELs. Nuclear Instruments and Methods in Physics Research A445, 59.Google Scholar
Young, L, Kanter, EP, Krässig, B, Li, Y, March, AM, Pratt, ST, Santra, R, Southworth, SH, Rohringer, N, DiMauro, LF, Doumy, G, Roedig, CA, Berrah, N, Fang, L, Hoener, M, Bucksbaum, PH, Cryan, JP, Ghimire, S, Glownia, JM, Reis, DA, Bozek, JD, Bostedt, C and Messerschmidt, M (2010) Femtosecond electronic response of atoms to ultra-intense X-rays. Nature (London) 466, 56.Google Scholar