Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T09:44:55.877Z Has data issue: false hasContentIssue false

Dynamics of double stimulated Brillouin scattering

Published online by Cambridge University Press:  09 March 2009

R. R. E. Salomaa
Affiliation:
Helsinki University of Technology, Department of Technical PhysicsSF-02150 EspooFinland

Abstract

The pump wave reflected from the overdense plasma may play an important role in the dynamics of stimulated Brillouin scattering. The particular case of Double Stimulated Brillouin Scattering (DSBS) suggested by Zozulya, Silin, & Tikhonchuk [Sov. Phys. JETP 59, 756 (1984)] is studied here in detail. In DSBS the incident pump wave and the reflected pump wave scatter from a common ion acoustic wave. Some steady state properties of DSBS are reviewed. The analysis of DSBS dynamics is based on a series of ‘numerical experiments’.At small pump intensities the system asymptotically approaches a true steady state. When the intensity is increased the solution turns into a regular pulse train with intensity dependent period. Connections between the pulses and soliton-like solutions of a damped sine-Gordon equation are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J. et al. 1973 Phys. Rev. Lett. 30, 1262.CrossRefGoogle Scholar
Andreev, N. E. et al. 1987 Sov. J. Plasma Phys. 13, 212.Google Scholar
Banfi, G. P., Eidmann, K. & Sigel, R. 1984 Opt. Commun. 52, 35.Google Scholar
Banfi, G. P. 1985 Z. Phys. B 62, 51.CrossRefGoogle Scholar
Barr, H. C., Boyd, T. J. M. & Coutts, G. A. 1988 Phys. Rev. Lett. 60, 1950.CrossRefGoogle Scholar
Baumgärtel, K. & Sauer, K. 1982 Phys. Rev. A26, 3031.CrossRefGoogle Scholar
Cairns, R. A. 1975 J. Plasma Physics 14, 327.Google Scholar
Chegotov, M. V. et al. 1986 Plasma Phys. and Contr. Fusion 28, 413.CrossRefGoogle Scholar
Drühl, K. & Alsing, G. 1986 Physica 20D, 429.Google Scholar
Malomed, B. A. 1987 Phys. Lett. A 123, 459.Google Scholar
Montes, C. 1983 Phys. Rev. Lett. 50, 1129.Google Scholar
Offenberger, A. A. et al. 1988 Abstracts of “19th ECLIM, European Conference on Laser Interaction with Matter”,Madrid.Google Scholar
Pättikangas, T. J. H. & Salomaa, R. R. E. 1989a Laser Interaction with Matter (edited by Velarde, G., Minguez, E., and Perlado, I. M.) (World ScientificSingapore), p. 181.Google Scholar
Pättikangas, T. J. H. & Salomaa, R. R. E. 1989b Physica Scripta 40, 99.CrossRefGoogle Scholar
Randall, C. J., Albritton, J. R. & Thomson, J. J. 1981 Phys. Fluids 24, 1474.CrossRefGoogle Scholar
Randall, C. J. & Albritton, J. R. 1984 Phys. Rev. Lett. 52, 1887.CrossRefGoogle Scholar
Silin, V. P., Tikhonchuk, V. T. & Chegotov, M. V. 1986 Sov. J. Plasma Phys. 12, 204.Google Scholar
Short, R. W. & Williams, E. A. 1981 Phys. Rev. Lett. 47, 337.Google Scholar
Zozulya, A. A., Silin, V. P. & Tikhonchuk, V. T. 1984 Sov. Phys. JETP 59, 756.Google Scholar
Zozulya, A. A. et al. 1985 Sov. J. Plasma Phys. 11, 611.Google Scholar