While the current issue was under preparation, the fifth International Conference on Inertial Fusion Sciences and Applications was held at Kobe, Japan, from September 9–14, 2007. This conference has developed into the most important biannual meeting of scientists involved in fusion science and its applications. The topics addressed at this conference are also at the center of interest for readers and authors of Laser and Particle Beams. Inertial Fusion Energy is generally associated with research at major laser facilities like the National Ignition Facility (NIF) in the United States and the project Megajoule in France (Dewald et al., Reference Dewald, Landen, Suter, Schein, Holder, Campbell, Glenzer, McDonald, Niemann, Mackinnon, Schneider, Haynam, Hinkel and Hammel2006; Kilkenny et al., Reference Kilkenny, Alexander, Nikroo, Steinman, Nobile, Bernat, Cook, Letts, Takagi and Harding2005). Smaller laser facilities like the Vulcan petawatt Laser (Danson et al., Reference Danson, Brummitt, Clarke, Collier, Fell, Frackiewicz, Hawkes, Hernandez-Gomez, Holligan, Hutchinson, Kidd, Lester, Musgrave, Neely, Neville, Norreys, Pepler, Reason, Shaikh, Winstone, Wyatt and Wyborn2005), or the Prague Asterix Laser (PALS (Jungwirth, Reference Jungwirth2005; Batani et al., Reference Batani, Dezulian, Redaelli, Benocci, Stabile, Canova, Desai, Lucchini, Krousky, Masek, Pfeifer, Skala, Dudzak, Rus, Ullschmied, Malka, Faure, Koenig, Limpouch, Nazarov, Pepler, Nagai, Norimatsu and Nishimura2007), and others study specific aspects of laser matter interaction at high intensities. Especially the discovery of high energy electrons and ions accelerated in laser plasma has given a boost to this field (Flippo et al., Reference Flippo, Hegelich, Albright, Yin, Gautier, Letzring, Schollmeier, Schreiber, Schulze and Fernandez2007; Yin et al., Reference Yin, Albright, Hegelich and Fernández2006; Lifshitz et al., Reference Lifschitz, Faure, Glinec, Malka and Mora2006; Glinec et al., Reference Glinec, Faure, Pukhov, Kiselev, Gordienko, Mercier and Malka2005 Roth et al., Reference Roth, Brambrink, Audebert, Blazevic, Clarke, Cobble, Cowan, Fernandez, Fuchs, Geissel, Habs, Hegelich, Karsch, Ledingham, Neely, Ruhl, Schlegel and Schreiber2005). While laser drivers are expected to achieve ignition and gain in the laboratory, within a few years from now the route to economically feasible inertial fusion energy still remains open. Heavy ion beam drivers from accelerators offer the option of high repetition rate and efficient transformation of electric energy to kinetic energy of the beam ion, which in turn couples its energy in a very efficient way to the bulk matter of the target. Major accelerator laboratories worldwide have been and are currently still engaged in projects to investigate the potential of ion beams as drivers for inertial fusion energy.
It is obvious that significant advances have been made toward inertial fusion. Both large scale laser facilities designed to achieve ignition soon after 2010 are nearing completion. The status of the National Ignition Facility in the U.S and the MegaJoule project in France was the obvious focal point of interest, and is the subject of a large number of recent publications (Giorla et al., Reference Giorla, Poggi, Galmiche, Seytor, Quach, Cherfils, Gauthier, Laffite and Masse2007; Haynam et al., Reference Haynam, Wegner, Auerbach, Bowers, Dixit, Erbert, Heestand, Henesian, Hermann, Jancaitis, Manes, Marshall, Mehta, Menapace, Moses, Murray, Nostrand, Orth, Patterson, Sacks, Shaw, Spaeth, Sutton, Williams, Widmayer, White, Yang and Van Wonterghem2007). However, laser laboratories worldwide are participating in the effort to understand the details of beam matter interaction physics necessary to achieve the conditions of inertial fusion (Laska et al., Reference Laska, Jungwirth, Krasa, Krousky, Pfeifer, Rohlena, Ullschmied, Badziak, Parys, Wolowski, Gammino, Torrisi and Boody2006; Lontano et al., Reference Lontano, Passoni, Riconda, Tikhonchuk and Weber2006; Borghesi et al., Reference Borghesi, Audebert, Bulanov, Cowan, Fuchs, Gauthier, MacKinnon, Patel, Pretzler, Romagnani, Schiavi, Toncian and Willi2005; Schaumann et al., Reference Schaumann, Schollmeier, Rodriguez-Prieto, Blazevic, Brambrink, Geissel, Korostiy, Pirzadeh, Roth, Rosmej, Faenov, Pikuz, Tsigutkin, Maron, Tahir and Hoffmann2005). The scientific discussion for many years shows (Meyer-ter-Vehn et al., Reference Meyertervehn, Witkowski, Bock, Hoffmann, Hofmann, Muller, Arnold and Mulser1990; Funk et al., Reference Funk, Bock, Dornik, Geissel, Stetter, Stowe, Tahir and Hoffmann1998) and it was confirmed here that the target design is a most crucial issue for the experimental facilities as well as for a future full scale driver (Nobile et al., Reference Nobile, Nikroo, Cook, Cooley, Alexander, Hackenberg, Necker, Dickerson, Kilkenny, Bernat, Chen, Xu, Stephens, Huang, Haan, Forsman, Atherton, Letts, Bono and Wilson2006; Fernandez et al., Reference Fernandez, Hegelich, Cobble, Flippo, Letzring, Johnson, Gautier, Shimada, Kyrala, Wang, Wetteland and Schreiber2005; Khalenkov et al., Reference Khalenkov, Borisenko, Kondrashov, Merkuliev, Limpouch and Pimenov2006; Koresheva et al., Reference Koresheva, Osipov and Aleksandrova2005).