Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T09:37:00.916Z Has data issue: false hasContentIssue false

Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction

Published online by Cambridge University Press:  23 January 2009

R.P. Sharma*
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
*
Address correspondence and reprint request to: R.P. Sharma, Centre for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. E-mail: rpsharma@ces.iitd.ernet.in

Abstract

This paper presents the laser beam filamentation at ultra relativistic laser powers, when the paraxial restriction on the beam is relaxed during the filamentation process. On account of laser beam intensity gradient and background density gradients in filamentary regions, the electron plasma wave (EPW) at pump wave frequency is generated. This EPW is found to be highly localized because of the laser beam filaments. The interaction of the incident laser beam with the EPW leads to the second harmonic generation. The second harmonic spectrum has also been studied in detail, and its correlation with the filamentation of the laser beam has been established. Starting almost with a monochromatic component of laser beam propagation, the second harmonic spectrum becomes more complicated, and broadened when the laser beam propagates further, and filamentation takes place. For the typical laser beam and plasma parameters: laser beam with wave length of 1064 nm, power flux of 1018 W/cm2, and plasma with temperature 1 KeV, we found that the conversion efficiency equals about (E2/E0) = 8 × 10−3, and the spectrum is quite broad, which depends upon the laser beam propagation distance. The results (specifically, the second harmonic spectral feature) presented here may be used for the diagnostics of laser produced plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet Phys. Usp. 10, 609636.Google Scholar
Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-Ray lasing by optical field induced ionization. Phys. Rev. Lett. 66, 25892592.CrossRefGoogle ScholarPubMed
Baiwen, L.I, Ishiguro, S., Škoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.CrossRefGoogle Scholar
Baton, S.D., Baldis, H.A.Jalinaud, T. & Labaune, C. (1993). Fine-scale spatial, and temporal structure of second-harmonic emission from an underdense plasma. Europhys. Lett. 23, 191196.Google Scholar
Brandi, F., Giammanco, F. & Ubachs, W. (2006). Spectral redshift in harmonic generation from plasma dynamics in the laser focus. Phys. Rev. Lett. 96, 123904.CrossRefGoogle ScholarPubMed
Brandi, H.S., Manus, C. & Mainfray, G. (1993). Relativistic self-focusing of ultra intense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 37803783.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004). Progress in direct-drive fusion studies for the Laser Mégajoule. Laser Part. Beams 22, 109114.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Particle Beams 26, 147155.CrossRefGoogle Scholar
Davis, J., Petrov, G.M. & Velikovich, A.L. (2005). Dynamics of intense laser channel formation in an underdense plasma. Phys. plasma 12, 123–102.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, K.M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.Google Scholar
Esarey, E., Ting, A., Sprangle, P., Umstadter, D. & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95104.CrossRefGoogle Scholar
Ganeev, R.A., Suzuki, M., Baba, M. & Kuroda, H. (2007). High-order harmonic generation from laser plasma produced by pulses of different duration. Phys. Rev. A 76, 023805.CrossRefGoogle Scholar
Gibbon, P. (1997). High-order harmonic generation in plasmas. IEEE J. Quantum Electron. 33, 1915.CrossRefGoogle Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser part. Beams 25, 211218.CrossRefGoogle Scholar
Hafeez, S., Shaikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser. Laser Part. Beams 26, 4150.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Huillier, A.L. & Balcou, P. (1993). Higher order harmonic generation in rare gases with a 1-ps 1053–nm laser. Phys. Rev. Lett. 70, 1935.Google Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Particle Beams 26, 37.Google Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.Google Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction, New York: Addison – Wesley Publishing Company.Google Scholar
Kuehl, T., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & Team, P. (2007). Optimization of the non-normal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Particle Beams 25, 9397.Google Scholar
Lemoff, B.E., Yin, G.Y., Gordan, C.L., Barty, C.P.J. & Harris, S.E. (1995). Demonstration of 10-Hz femptosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574.Google Scholar
Liu, M., Guo, H., Zhou, B., Tang, L., Liu, X. & Yi, Y. (2006). Comparison of ponderomotive self-channeling and higher order relativistic effects on intense laser beams propagating in plasma channels. Phys. Lett. A 352, 457461.Google Scholar
Liu, X., Umstadter, D., Esarey, E. & Ting, A. (1993). Harmonic generation by an intense laser pulse in neutral and ionized gases. IEEE Trans. Plasma Sci. 21, 90.Google Scholar
Malka, V., Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Danson, C., Neely, D. & Walsh, N. (1997). Second harmonic generation and its interaction with relativistic plasma wave driven by forward Raman instability in underdense plasmas. Phys. Plasmas 4, 11271131.Google Scholar
Merdji, H., Guizard, S., Martin, P., Petite, G., Quéré, F., Carré, B., Hergott, J.F., Déroff, L., Salières, P., Gobert, O., Meynadier, P. & Perdrix, M. (2000). Ultrafast electron relaxation measurements on a-SiO2 using high-order harmonics generation. Laser Part. Beams 18, 489494.Google Scholar
Meyer, J. & Zhu, Y. (1987). Second harmonic emission from an underdense laser produced plasma and filamentation. Phys. Fluids 30, 890.Google Scholar
Mori, W.B., Decker, C.D. & Leemans, W.P. (1993). Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas. IEEE Trans. Plasma Sci. 21, 110.CrossRefGoogle Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.CrossRefGoogle Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams, 25, 321325.Google Scholar
Ozaki, T., Bom, L.E. & Ganeev, R.A. (2008). Extending the capabilities of ablation harmonics to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.Google Scholar
Ozaki, T., Kieffer, J.C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.Google Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P., Yaakobi, B., Carill, J.J. III & Drake, R.P. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 2072.Google Scholar
Schifano, E., Baton, S.D., Biancalana, V., Giuletti, A., Giuletti, D., Labaune, C. & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction condition. Laser Part. Beams 12, 435–144.Google Scholar
Shi, Y.J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.Google Scholar
Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1989). Prospects for X-ray amplification with charge-displacement self-channeling. IEEE J. Quantum Electron. 25, 2423.Google Scholar
Stamper, J.A., Lehmberg, R.H., Schmitt, A., Herbst, M.J., Young, F.C., Gardener, J.H. & Obenschain, S.P. (1985). Evidence in the second harmonic emission for self-focusing of a laser pulse in a plasma. Phys. Fluids 28, 2563.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.Google Scholar
Zeng, G., Shen, B., Yu, W. & Xu, Z. (1996). Relativistic harmonic generation excited in the ultrashort laser pulse regime. Phys. Plasmas 3, 4220.CrossRefGoogle Scholar