Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T21:04:36.514Z Has data issue: false hasContentIssue false

Effect of laser pulse time profile on its absorption by argon clusters

Published online by Cambridge University Press:  13 July 2011

Gaurav Mishra*
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
Amol R. Holkundkar
Affiliation:
Department of Physics, Umeå University, Umeå, Sweden
N.K. Gupta
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
*
Address correspondence and reprint requests to: Gaurav Mishra, Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. E-mail: gauravm@barc.gov.in

Abstract

The interaction of medium sized Argon clusters (30 Å) with high-intensity femtosecond laser pulses (806 nm, 8 × 1016 W/cm2) of durations ranging from 10 fs to 120 fs have been studied using a three-dimensional relativistic time dependent molecular dynamic approach. The dynamics of cluster expansion is explained in terms of temporal evolution of electron population in the cluster and snapshots of particle positions at various times. The effects of inter-cluster distance on ionization dynamics are presented. It is observed that the collisional ionization increases with decreasing inter-cluster distance. The effect of pulse duration on laser energy absorption is also studied. For a laser pulse of gaussian time profile, there exists an optimum pulse duration for maximum absorption. No such optimum exists for a nearly flat top (super-gaussian) laser pulse. Results indicate the existence of resonance absorption inside the cluster. It is also observed that the high energy component of ion emission from cluster is anisotropic, showing a preferential direction of emission along laser polarization while the low energy ions emerge almost isotropically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adoui, L., Gobert, O., Indelicato, P., Lamour, E., Meynadier, P., Normand, D., Perdrix, M., Prigent, C., Rozet, J. & Vernhet, D. (2003). Xe(l) X-ray emission from laser-cluster interaction. Nucl. Instrum. Methods Phys. Res. B 205, 341345.CrossRefGoogle Scholar
Ammosov, M.V., Delone, N.B. & Krainov, V.P. (1986). Tunnel ionization of complex atoms ans atomic ions by an alternating electromagnetic field. Sov. Phys. JETP 64, 11911194.Google Scholar
Ashcroft, N. & Mermin, N. (1976). Solid State Physics. Orlando: Saunders College Publishing.Google Scholar
Borisov, A.B., Song, X., Frigeni, F., Koshman, Y., Dai, Y., Boyer, K. & Rhodes, C.K. (2003). Ultrabright multikilovolt coherent tunable X-ray source at λ ~2.71-2.93 Å. J. Phys. B 36, 34333455.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.CrossRefGoogle ScholarPubMed
Davis, J., Petrov, G.M. & Velikovich, A. (2007). Nonlinear energy absorption of rare gas clusters in intense laser field. Phys. Plasmas 14, 0607011–4.CrossRefGoogle Scholar
Deiss, C., Rohringer, N., Burgdörfer, J., Lamour, E., Prigent, C., Rozet, J.P. & Vernhet, D. (2006). Laser-cluster interaction: X-ray production by short laser pulses. Phys. Rev. Lett. 96, 0132031–4.CrossRefGoogle ScholarPubMed
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phy. Rev. A 53, 33793402.CrossRefGoogle ScholarPubMed
Ditmire, T., Smith, R.A., Tisch, J.W.G. & Hutchinson, M.H.R. (1997a). High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78, 31213124.CrossRefGoogle Scholar
Ditmire, T., Tisch, J.W.G., Springate, E., Mason, M.B., Hay, N., Smith, R.A., Marangos, J. & Hutchinson, M.H.R. (1997b). High-energy ions produced in explosions of superheated atomic cluster. Nature 386, 5456.CrossRefGoogle Scholar
Fennel, T., Meiwes-Broer, K.H., Tiggesbäumker, J., Reinhard, P.G., Dinh, P.M. & Suraud, E. (2010). Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 17931842.CrossRefGoogle Scholar
Hagena, O.F. & Obert, W. (1972). Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas. J. Chem. Phys. 56, 17931802.CrossRefGoogle Scholar
Holkundkar, A.R. & Gupta, N.K. (2008). Role of radial nonuniformities in the interaction of an intense laser with atomic clusters. Phys. Plasmas 15, 0131051–9.CrossRefGoogle Scholar
Holkundkar, A.R., Mishra, G. & Gupta, N.K. (2011). Molecular dynamic simulation for laser-cluster interaction. Phys. Plasmas (in press).Google ScholarPubMed
Ishikawa, K. & Blenski, T. (2000). Explosion dynamics of rare-gas clusters in an intense laser field. Phys. Rev. A 62, 0632041–11.CrossRefGoogle Scholar
Jungreuthmayer, C., Geissler, M., Zanghellini, J. & Brabec, T. (2004). Microscopic analysis of large-cluster explosion in intense laser fields. Phys. Rev. Lett. 92, 1334011–4.CrossRefGoogle ScholarPubMed
Kirz, J., Jacobsen, C. & Howells, M. (1995). Soft X-ray microscopes and their biological applications. Q. Rev. Biophys. 28, 33130.CrossRefGoogle ScholarPubMed
Kostyukov, I. & Rax, J.M. (2003). Collisional versus collisionless resonant and autoresonant heating in laser-cluster interaction. Phys. Rev. E 67, 0664051–6.CrossRefGoogle ScholarPubMed
Krishnamurthy, M., Mathur, D. & Kumarappan, V. (2004). Anisotropic “charge-flipping” acceleration of highly charged ions from clusters in strong optical fields. Phys. Rev. A 69, 0332021–5.CrossRefGoogle Scholar
Kubiak, G.D., Bernardez, L.J., Krenz, K.D., O Connell, D.J., Gutowski, R. & Todd, M.M. (1996). Debris-free euvl sources based on gas jets. OSA Trends Opt. Photonics Ser. 4, 6671.Google Scholar
Kumarappan, V., Krishnamurthy, M. & Mathur, D. (2001). Asymmetric high-energy ion emission from argon clusters in intense laser fields. Phys. Rev. Lett. 87, 0850051–4.CrossRefGoogle ScholarPubMed
Kumarappan, V., Krishnamurthy, M. & Mathur, D. (2002). Two-dimensional effects in the hydrodynamic expansion of xenon clusters under intense laser irradiation. Phys. Rev. A 66, 0332031–4.CrossRefGoogle Scholar
Kundu, M. & Bauer, D. (2006 a). Collisionless energy absorption in the short-pulse intense laser-cluster interaction. Phys. Rev. A 74, 0632021–11.CrossRefGoogle Scholar
Kundu, M. & Bauer, D. (2006 b). Nonlinear resonance absorption in the laser-cluster interaction. Phys. Rev. Lett. 96, 1234011–4.CrossRefGoogle ScholarPubMed
Last, I. & Jortner, J. (1999). Quasiresonance ionization of large multicharged clusters in a strong laser field. Phys. Rev. A 60, 22152221.CrossRefGoogle Scholar
Last, I. & Jortner, J. (2000). Dynamics of the coulomb explosion of large clusters in a strong laser field. Phys. Rev. A 62, 0132011–9.CrossRefGoogle Scholar
Last, I. & Jortner, J. (2004). Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. iii. coulomb explosion of deuterium clusters. J. Chem. Phys. 121, 30303043.CrossRefGoogle ScholarPubMed
Levine, Z.H., Kalukin, A.R., Frigo, S.P., McNulty, I. & Kuhn, M. (1999). Tomographic reconstruction of an integrated circuit interconnect. Appl. Phys. Lett. 74, 150152.CrossRefGoogle Scholar
Liu, J., Li, R., Zhu, P., Xu, Z. & Liu, J. (2001). Modified hydrodynamic model and its application in the investigation of laser-cluster interactions. Phys. Rev. A 64, 0334261–7.CrossRefGoogle Scholar
Lotz, W. (1968). Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium. Z. Phys 216, 241247.CrossRefGoogle Scholar
Milchberg, H.M., McNaught, S.J. & Parra, E. (2001). Plasma hydrodynamics of the intense laser-cluster interaction. Phys. Rev. E 64, 0564021–7.CrossRefGoogle ScholarPubMed
Parra, E., Alexeev, I., Fan, J., Kim, K.Y., McNaught, S.J. & Milchberg, H.M. (2003). Hydrodynamic time scales for intense laser-heated clusters. J. Opt. Soc. Am. B 20, 118124.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to Petawatt Subpicosecond Lasers. Science 264, 917924.CrossRefGoogle ScholarPubMed
Petrov, G.M. & Davis, J. (2008). Interaction of intense ultrashort pulse lasers with clusters. Physics of Plasmas 15, 0567051–8.Google Scholar
Petrov, G.M., Davis, J., Velikovich, A.L., Kepple, P.C., Dasgupta, A., Clark, R.W., Borisov, A.B., Boyer, K. & Rhodes, C.K. (2005). Modeling of clusters in a strong 248-nm laser field by a three-dimensional relativistic molecular dynamic model. Phys. Rev. E 71, 0364111–10.CrossRefGoogle Scholar
Prigent, C., Deiss, C., Lamour, E., Rozet, J.P., Vernhet, D. & Burgdörfer, J. (2008). Effect of pulse duration on the x-ray emission from ar clusters in intense laser fields. Phys. Rev. A 78, 0532011–12.CrossRefGoogle Scholar
Rose-Petruck, C., Schafer, K.J., Wilson, K.R. & Barty, C.P.J. (1997). Ultrafast electron dynamics and inner-shell ionization in laser driven clusters. Phys. Rev. A 55, 11821190.CrossRefGoogle Scholar
Smirnov, M.B. & Krainov, V.P. (2003). Hot electron generation in laser cluster plasma. Phys. Plasmas 10, 443447.CrossRefGoogle Scholar
Springate, E., Hay, N., Tisch, J.W.G., Mason, M.B., Ditmire, T., Hutchinson, M.H.R. & Marangos, J.P. (2000). Explosion of atomic clusters irradiated by high-intensity laser pulses: Scaling of ion energies with cluster and laser parameters. Phys. Rev. A 61, 0632011–7.Google Scholar
Voronov, G.S. (1997). A practical fit formula for ionization rate coefficients of atoms and ions by electron impact : Z = 1-28. At. Data Nucl. Data Tables 65, 135.CrossRefGoogle Scholar
Zweiback, J., Ditmire, T. & Perry, M.D. (1999). Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. A 59, R3166R3169.CrossRefGoogle Scholar