Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T04:22:38.644Z Has data issue: false hasContentIssue false

Effect of magnetic field on the expansion dynamics of laser-blow-off generated plasma plume: Role of atomic processes

Published online by Cambridge University Press:  14 April 2010

Ajai Kumar*
Affiliation:
Institute for Plasma Research, Bhat, India
R.K. Singh
Affiliation:
Institute for Plasma Research, Bhat, India
V. Prahlad
Affiliation:
Institute for Plasma Research, Bhat, India
H.C. Joshi
Affiliation:
Institute for Plasma Research, Bhat, India
*
Address correspondence and reprint requests to: Ajai Kumar, Institute for Plasma Research, Bhat, Gandhinagar-382 428, India. E-mail: ajai@ipr.res.in

Abstract

The effect of a variable magnetic field on Li plasma produced by laser-blow-off technique has been studied experimentally. Enhancement in the intensity of the spectral lines from neutrals was observed, which varied with the magnetic field. The enhancement in emission from Li I was found to differ for the two different transitions viz. 670.8 nm (2s 2S1/2 ← 2p 2P3/2,1/2) and 610.3 nm (2p 2P1/2,3/2 ← 3d 2P3/2,5/2), which is more prominent for 670.8 nm. Conventionally, the enhancement in emission in the presence of the magnetic field has been explained in terms of radiative recombination. However, the atomic analysis by computing photon emissivity coefficients in the present case has revealed for the first time that it is due to electron impact excitation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N. & Thomson, P. (1987). A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Sci. Technol. B 5, 14901494.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117119.CrossRefGoogle Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water. Laser Part. Beams 25, 613620.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Harilal, S.S., O'Shay, B. & Tillack, M.S. (2005). Debris mitigation in a laser-produced tin plume using a magnetic field. J. Appl. Phys. 98, 036102.CrossRefGoogle Scholar
Harilal, S.S., Tillack, M.S., O'Shay, B., Bindhu, C.V. & Najmabadi, F. (2004). Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E 69, 026413.CrossRefGoogle ScholarPubMed
Huber, A., Samm, U., Schweer, B. & Mertens, Ph. (2005). Result from a double Li-beam technique for measurement of both radial and poloidal components of electron density fluctuations using two thermal beams. Plasma Phys. Contr. Fusion 47, 409440.CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2008). Comparative study of laser produced Li plasma plumes from thin film and solid target. J. Appl. Phys. 104, 093302.CrossRefGoogle Scholar
Kumar, A., Chaudhari, V., Patel, K., George, S., Sunil, S., Singh, R.K. & Singh, R. (2009 a). An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field. Rev. Sci. Instrum. 80, 033503.CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Subramanian, K.P., Patel, G.B., Sunil, S. & Prajapati, I.A. (2006). Effects of ambient pressure and laser fluence on the temporal evolution of 426.7 nm CII line in laser-blow-off of multi-layered LiF-C thin film. J. Phys. D. Appl. Phys. 39, 48604866.CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Thomas, J. & Sunil, S. (2009 b). Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe. J. Appl. Phys. 106, 043306.CrossRefGoogle Scholar
Li, Y., Hu, Z.C., Jiang, Z. & Li, Z. (2009). Optical emission enhancement of laser-produced copper plasma under a steady magnetic field. Appl. Opt. 48, B105B110.CrossRefGoogle Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.CrossRefGoogle Scholar
Loch, S.D., Fontes, C.J., Koglan, J., Pindzola, M.S., Balance, C.P., Griffin, D.C., O'Mullane, M.G. & Summers, H.P. (2004). Collisional-radiative study of lithium plasmas. Phys. Rev. E 69, 066405.CrossRefGoogle ScholarPubMed
Neogi, A. & Thareja, R.K. (1999). Laser-produced carbon plasma expanding in vacuum, low-pressure ambient gas and non-uniform magnetic field. Phys. Plasmas 6, 365371.CrossRefGoogle Scholar
Pant, H.C., Rai, V.N. & Shukla, M. (1998). Behavior of expanding laser produced plasma in a magnetic field. Phys. Scripta T75, 104111.CrossRefGoogle Scholar
Peacock, N.J., O'Mullane, M.J., Barnsley, R. & Tarbutt, M. (2008). Anticipated X-ray and VUV spectroscopic data from ITER with appropriate diagnostic instrumentation. Can. J. Phys. 86, 277284.CrossRefGoogle Scholar
Pospieszczyk, A., Aumyr, F., Hintz, E. & Schweer, J. (1989). Recent developments for plasma edge diagnostics using atomic beams. J. Nucl. Mater. 162–164, 574581.CrossRefGoogle Scholar
Rafique, M.S., Khaleeq-Ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217224.CrossRefGoogle Scholar
Rai, V.N., Rai, A.K., Yueh, , Fang, Yu. & Singh, J.P. (2003). Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt. 42, 20852095.CrossRefGoogle ScholarPubMed
Shen, X.K., Lu, Y.F., Gebre, T.H., Ling, H. & Han, Y.X. (2006). Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303.CrossRefGoogle Scholar
Singh, R.K. & Kumar, A. (2007 a). Flow dynamics of ions generated by laser-blow-off of LiF-C film. IEEE Trans. Plasma Sci. 35, 17171723.CrossRefGoogle Scholar
Singh, R.K., Kumar, A., Patel, G.B. & Subramanian, K.P. (2007 b). Role of ambient gas and laser fluence in governing the dynamics of the plasma plumes produced by laser blow off of LiF–C thin film. J. Appl. Phys. 101, 103301.CrossRefGoogle Scholar
Singh, R.K., Kumar, A., Prahlad, V. & Joshi, H.C. (2008). Generation of fast neutrals in a laser-blow-off of LiF–C film: A formation mechanism. Appl. Phys. Lett. 92, 171502.CrossRefGoogle Scholar
Sunil, S., Kumar, A., Singh, R.K. & Subramanian, K.P. (2008). Measurements of electron temperature and density of multi-component plasma plume formed by laser-blow-off of LiF-C film. J. Phys. D: Appl. Phys. 41, 085211.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap Laser Part. Beams 25, 453464.Google Scholar
Zvorykin, V.D., Berthe, L., Boustie, M., Levchenko, A.O. & Ustinovskii, N.N. (2008). Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities. Laser Part. Beams 26, 461471.CrossRefGoogle Scholar