Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T10:05:34.579Z Has data issue: false hasContentIssue false

Effect of self-focused cosh Gaussian laser beam on the excitation of electron plasma wave and particle acceleration

Published online by Cambridge University Press:  09 September 2016

B. Gaur
Affiliation:
Department of Physics, Laser Plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand-248001, India
P. Rawat
Affiliation:
Department of Physics, Laser Plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand-248001, India
G. Purohit*
Affiliation:
Department of Physics, Laser Plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand-248001, India
*
*Address correspondence and reprint requests to: G. Purohit, Department of Physics, Laser Plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand-248001, India. E-mail: gunjan75@gmail.com

Abstract

This work presents an investigation of the self-focusing of a high-power laser beam having cosh Gaussian intensity profile in a collissionless plasma under weak relativistic-ponderomotove (RP) and only relativistic regimes and its effect on the excitation of electron plasma wave (EPW), and particle acceleration process. Nonlinear differential equations have been set up for the beam width and intensity of cosh Gaussian laser beam (CGLB) and EPW using the Wentzel-Kramers-Brillouin and paraxial-ray approximations as well as fluid equations. The numerical results are presented for different values of decentered parameter ‘b’ and intensity parameter ‘a’ of CGLB. Strong self-focusing is observed in RP regime as compared with only relativistic nonlinearity. Numerical analysis shows that these parameters play crucial role on the self-focusing of the CGLB and the excitation of EPW. It is also found that the intensity/amplitude of EPW increases with b and a. Further, nonlinear coupling between the CGLB and EPW leads to the acceleration of electrons. The intensity of EPW and energy gain by electrons is significantly affected by including the ponderomotive nonlinearity. The energy of the accelerated electrons is increased by increasing the value of ‘b’. The results are presented for typical laser and plasma parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P., & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Antonsen, T.M. Jr. & Mora, P. (1992). Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 22042207.Google Scholar
Borghesi, M., Mackinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A., & Meyerter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.Google Scholar
Borisov, B.G., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., Mcpherson, A., Solem, J.C., Boyer, K., & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Boyd, R.W., Lukishova, S.G., & Shen, Y.R. (2008). (Eds.) Self-focusing: Past and Present. Fundamentals and Prospects, Topics in Applied Physics, Vol. 114. Berlin: Springer.Google Scholar
Brandi, H.S., Manus, C., & Mainfray, G. (1993a). Relativistic self-focusing of ultra intense laser pulses in inhomogeneous underdense plasmas. Phys.Rev. E 47, 37803783.CrossRefGoogle Scholar
Brandi, H.S., Manus, C., & Mainfray, G. (1993b). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma: paraxial approximation. Phys. Fluids B 5, 35393550.CrossRefGoogle Scholar
Casperson, L.W., Hall, D.G., & Tovar, A.A. (1997). Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14, 33413348.Google Scholar
Chen, F.F. (1984). Plasma Physics and Controlled Fusion. New York: Plenum Press.Google Scholar
Chen, R., Ni, Y., & Chu, X. (2011). Propagation of a cosh-Gaussian beam in a Kerr medium. Opt. Laser Technol. 43, 483487.Google Scholar
Chessa, P., Mora, P., & Antonsen, T.M. Jr. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasmas 5, 34513458.CrossRefGoogle Scholar
Chu, X., Ni, Y., & Zhou, G. (2007). Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere. Appl. Phys. B 87, 547552.Google Scholar
Esarey, E., Sprangle, P., Krall, J., & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron 33, 18791914.Google Scholar
Gill, T.S., Mahajanr, R., & Kaur, R. (2011). Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110.Google Scholar
Gorbunov, L.M. & Kirsanov, V.I. (1987). Excitation of plasma waves by an electromagnetic wave packet. Sov. Phys. JEPT 66, 290294.Google Scholar
Gupta, D.N. & Suk, H. (2007). Numerical investigation on self-focusing during laser electron acceleration in a magnetized plasma. J. Korean Phys. Soc. 50, 14061410.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H., & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101.Google Scholar
Ji, X., Huang, T., & Lu, B. (2006). Spreading of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere. Acta Phys. Sinica 55, 978982.Google Scholar
Joshi, C., Mori, W.B., Katsouleas, T., Dawson, J.M., Kindel, J.M., & Forslund, D.W. (1984). Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature 311, 525529.Google Scholar
Kant, N., Saralch, S., & Singh, H. (2011). Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika 56, 149153.Google Scholar
Kant, N. & Wani, M.A. (2015). Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption. Commun. Theor. Phys. 64, 103107.Google Scholar
Kant, N., Wani, M.A., & Kumar, A. (2012). Self-focusing of Hermite-Gaussian laser beams in plasma under plasma density ramp. Optics Commun. 285, 44834487.Google Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H., & Nakai, S. (1992). Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 4851.CrossRefGoogle ScholarPubMed
Konar, S., Mishra, M., & Jana, S. (2007). Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys Lett. A 362, 505510.CrossRefGoogle Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principle of Plasma Physics. Tokyo, Japan: McGraw Hill-Kogakusha.Google Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
Kumar, A., Gupta, M.K., & Sharma, R.P. (2006). Effect of ultra intense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.Google Scholar
Li, Y.T., Li, C., Zhou, M.L., Wang, W.M., Du, F., Ding, W.J., Lin, X.X., Liu, F., Sheng, Z.M., Peng, X.Y., Chen, L.M., Ma, J.L., Lu, X., Wang, Z.H., Wei, Z.Y., & Zhang, J. (2012). Strong terahertz radiation from relativistic laser interaction with solid density plasmas. Appl. Phys. Lett. 100, 254101.Google Scholar
Lu, B. & Luo, S. (2000). Beam propagation factor of hard-edge diffracted cosh-Gaussian beams. Opt. Commun. 178, 275281.CrossRefGoogle Scholar
Lu, B., Ma, H., & Zhang, B. (1999). Propagation properties of cosh-Gaussian beams. Opt. Commun. 164, 165170.Google Scholar
Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B., & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.Google Scholar
Malka, V., Renard-Le Galloudec, N., Huller, S., Pesme, D., Amiranoff, F., Baton, S.D., Modena, A., Mounaix, Ph., Rousseaux, C., & Salvati, M. (2000). Strong self-focusing in quasi-stationary laser plasmas. Phys. Plasmas 7, 42594265.Google Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D., & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.Google Scholar
Nanda, V. & Kant, N. (2014a). Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition. Phys. Plasmas 21, 042101.Google Scholar
Nanda, V. & Kant, N. (2014b). Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21, 072111.CrossRefGoogle Scholar
Patil, S.D. & Takale, M.V. (2013). Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402.Google Scholar
Patil, S.D., Takale, M.V., Fulari, V.J., Gupta, D.N., & Suk, H. (2013). Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 16.Google Scholar
Patil, S.D., Takale, M.V., Navare, S.T., & Dongare, M.B. (2009). Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption. Opt. Lasers Engg. 47, 604606.Google Scholar
Patil, S.D., Takale, M.V., Navare, S.T., & Dongare, M.B. (2010). Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplasma. Laser Part. Beams 28, 343349.Google Scholar
Priyanka, , Chauhan, P., & Purohit, G. (2013). Relativistic ponderomotive effect on the propagation of rippled laser beam and the excitation of electron plasma wave in collisionless plasma. Opt. Commun. 311, 317324.Google Scholar
Purohit, G., Sharma, P., & Sharma, R.P. (2012). Filamentation of laser beam and suppression of stimulated Raman scattering due to localization of electron plasma wave. J. Plasma Phys. 78, 5563.CrossRefGoogle Scholar
Rawat, P., Gauniyal, R., & Purohit, G. (2014). Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process. Phys. Plasmas 21, 062109.Google Scholar
Ren, C., Duda, B.J., Hemker, R.G., Mori, W.B., Katsouleas, T., Antonsen, T.M. Jr., & Mora, P. (2001). Compressing and focusing a short laser pulse by a thin plasma lens. Phys. Rev. E 63, 026411.Google Scholar
Sharma, A., Verma, M.P., & Sodha, M.S. (2004). Self-focusing of electromagnetic beams in collisional plasmas with nonlinear absorption. Phys. Plasmas. 11, 42754279.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K., & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Plasma and Semiconductors. Delhi: Tata-McGraw-Hill.Google Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D., & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas. 1, 16261634.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Tovar, A.A. & Casperson, L.W. (1998). Production and propagation of Hermite–sinusoidal-Gaussian laser beams. J. Opt. Soc. Am. A 15, 24252432.Google Scholar
Wang, X., Krishnan, M., Saleh, N., Wang, H., & Umstadter, D. (2000). Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 53245327.Google Scholar
Yang, X.H., Yu, W., Xu, H., Zhuo, H.B., Ma, Y.Y., Zou, D.B., Yu, T.P., Ge, Z.Y., Yin, Y., Shao, F.Q., & Borghesi, M. (2014). Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction. Phys. Plasmas 21, 063105.Google Scholar
Zhang, W. & Yu, M.Y. (2011). Generating intense ultrashort radiation by reflecting an ultrashort laser pulse from a thin target. Appl. Phys. Lett. 99, 141501.Google Scholar
Zhu, B., Wu, Y.-C.., Dong, K.-G., Hong, W., Teng, J., Zhou, W.-M., Cao, L.-F., & Gu, Y.-Q. (2012). Observation of a strong correlation between electromagnetic soliton formation and relativistic self-focusing for ultra-short laser pulses propagating through an under-dense plasma. Phys. Plasmas 19, 102304.Google Scholar