Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T12:07:34.956Z Has data issue: false hasContentIssue false

Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

Published online by Cambridge University Press:  20 December 2016

T. Kanesue*
Affiliation:
Brookhaven National Laboratory, NY 11973, USA
S. Ikeda
Affiliation:
Brookhaven National Laboratory, NY 11973, USA
*
*Address correspondence and reprint requests to: T. Kanesue, Brookhaven National Laboratory, BLDG930, Upton, NY 11973, USA. E-mail: tkanesue@bnl.gov

Abstract

A laser ion source (LIS) is a promising candidate as an ion source for heavy-ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a LIS to transport laser-produced plasma with a magnetic field to achieve a high-current beam. The effect of a tapered magnetic field on laser-produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Based on the experimentally obtained results, the performance of a scaled LIS for HIF was estimated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, R.C. & Meyer-ter-Vehn, J. (1987). Inertial confinement fusion driven by heavy-ion beams. Rep. Progr. Phys. 50, 559606.Google Scholar
Collier, J., Hall, G., Haseroth, H., Kugler, H., Kuttenberger, A., Langbein, K., Sharkov, B., Shumshurov, A. & Masek, K. (1996). The CERN laser-ion source. Laser Part. Beams 14, 283292.Google Scholar
Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Streltsov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Müller, R., Spädtke, P., Stöckl, C., Wolf, B. & Jacoby, J. (1996). Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC. Laser Part. Beams 14, 385392.Google Scholar
Haseroth, H., Kugler, H., Langbein, K., Lisi, N., Lombardi, A., Magnusson, H., Pirkl, W., Schnuriger, J., Scrivens, R., Tambini, J., Tanke, E., Homenko, S., Makarov, K., Roerich, V., Stepanov, A., Satov, Y., Kondrashev, S., Savin, S., Sharkov, B., Shumshurov, A., Krása, J., Láska, L., Pfeifer, M. & Woryna, E. (1998). Developments at the CERN laser ion source. Rev. Sci. Instrum. 69, 10511053.Google Scholar
Hofmann, I. (1998). HIDIF – an approach to high repetition rate inertial fusion with heavy ions. Nucl. Instrum. Methods Phys. Res. A 415, 1119.Google Scholar
Ikeda, S., Takahashi, K., Okamura, M. & Horioka, K. (2016). Behavior of moving plasma in solenoidal magnetic field in a laser ion source. Rev. Sci. Instrum. 87, 02A912.Google Scholar
Ishibashi, T., Hayashizaki, N. & Hattori, T. (2011). Two-beam interdigital-H-type radio frequency quadrupole linac with direct plasma injection for high intensity heavy ion acceleration. Phys. Rev. ST Accel. Beams 14, 060101.Google Scholar
Kanesue, T., Fuwa, Y., Kondo, K. & Okamura, M. (2014). Laser ion source with solenoid field. Appl. Phys. Lett. 105, 193506.Google Scholar
Kanesue, T., Tamura, J. & Okamura, M. (2008). Measurement of ion beam from laser ion source for Rhic Ebis. Proc. Eur. Particle Accelerator Conf., 23–27 June, Genoa, Italy, pp. 421423.Google Scholar
Kashiwagi, H., Fukuda, M., Okamura, M., Jameson, R., Hattori, T., Hayashizaki, H., Sakakibara, K., Takano, J., Yamamoto, K., Iwata, Y. & Fujimoto, T. (2006). Acceleration of high current fully stripped carbon ion beam by direct injection scheme. Rev. Sci. Instrum. 77, 03B305.Google Scholar
Kondrashev, S., Collier, J. & Sherwood, T. (1996). Space-charge compensation of highly charged ion beam from laser ion source. Laser Part. Beams 14, 323333.Google Scholar
Kondrashev, S., Kanesue, T., Okamura, M. & Sakakibara, K. (2006). Features of ion generation using Nd-glass laser. J. Appl. Phys. 100, 103301.Google Scholar
Kondrashev, S., Mescheryakov, N., Sharkov, B., Shumshurov, A., Khomenko, S., Makarov, K., Satov, Y. & Smakovskii, Y. (2000). Production of He-like light and medium mass ions in laser ion source. Rev. Sci. Instrum. 71, 14091412.Google Scholar
Kwan, J., Ahle, L., Beck, D., Bieniosek, F., Faltens, A., Grote, D., Halaxa, E., Henestroza, E., Herrmannsfeldt, W., Karpenko, V. & Sangster, T. (2001). Ion sources and injectors for HIF induction linacs. Nucl. Instrum. Methods Phys. Res. A 464, 379387.Google Scholar
Sha, S., Zhao, H.W., Guo, X.H., Zhang, Z.L., Fang, X., Guo, J.W., Zhang, W.H., Lu, W., Cao, Y., Ma, H.Y., Lin, S.H., Li, X.X., Ma, B.H., Yang, Y., Wang, H., Wu, Q., Li, J.Y., Feng, Y.C., Zhao, H.Y., Zhu, Y.H., Sun, L.T., Zhang, X.Z., Chen, X.M. & Xie, D.Z. (2012). Status of the laser ion source at IMP. Rev. Sci. Instrum. 83, 02B303.Google Scholar
Sharkov, B., Shumshurov, A., Roudskoy, I., Kilipio, A., Shaskov, E., Kiselev, N. & Pashinin, P. (1999). Highly charged ions from Nd-laser produced plasma of medium and high-Z targets. Laser Part. Beams 17, 741747.Google Scholar
Takahashi, K., Okamura, M., Sekine, M., Cushing, E. & Jandovitz, P. (2013). Effect of solenoidal magnetic field on drifting laser plasma. AIP Conf. Proc. 1525, 241244.Google Scholar
Torrisi, L., Gammino, S., Andò, L. & Làska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation. J. Appl. Phys. 91, 46854692.CrossRefGoogle Scholar
Zhao, H., Zhang, J., Jin, Q., Liu, W., Wang, G., Sun, L., Zhang, X. & Zhao, H. (2016). New development of laser ion source for highly charged ion beam production at Institute of Modern Physics. Rev. Sci. Instrum. 87, 02A917.Google Scholar