Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T12:14:28.108Z Has data issue: false hasContentIssue false

Effects of chirp and pulse shape on high harmonic generation and absorption in overdense plasmas

Published online by Cambridge University Press:  15 March 2011

X. Lavocat-Dubuis
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
F. Vidal*
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
J.-P. Matte
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
C. Popovici
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
T. Ozaki
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
J.-C. Kieffer
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada
*
Address correspondence and reprint requests to: F. Vidal, INRS-Énergie, Matériaux et Télécommunications, 1650 Bould. Lionel-Boulet, Varennes, Québec, Canada, J3X 1S2. E-mail: vidal@emt.inrs.ca

Abstract

Using particle-in-cell simulations, we investigated the effect of group velocity dispersion (GVD) and third order dispersion (TOD) in the laser pulse on high-order harmonic generation and laser absorption in overdense plasmas. A 1020 W/cm−2, 35-fs transform-limited Gaussian pulse was stretched to 160 fs through chirping. When including GVD alone, the temporal pulse shape remains symmetric and no difference was seen in the harmonic spectra for opposite signs of GVD. However, when adding TOD to GVD, the pulse is no longer symmetric and noticeable differences in harmonics intensity were observed for opposite signs of TOD. We show that the higher harmonic intensity obtained with positive TOD is connected with a steeper front edge of the pulse and the appearance of strong modulations in the harmonic spectrum. The chirp broadens and shifts the harmonics. Laser energy absorption is also mostly affected by the pulse shape. Simple estimates indicate that, in the main example considered in this paper, about half the laser energy absorption (10%) is due to vacuum heating.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, P. & DiMauro, L.F. (2004). The physics of attosecond light pulses. Repts Prog. Physics 67, 813.Google Scholar
Backus, S., Durfee, C.G., Murnane, M.M. & Kapteyn, H.C. (1998). High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207.Google Scholar
Bourdier, A. (1983). Oblique incidence of a strong electromagnetic wave on a cold inhomogeneous electron plasma. Relativistic effects. Phys. Fluids 26, 1804.Google Scholar
Boyd, T.J.M. & Ondarza-Rovira, R. (2007). Plasma modulation of harmonic emission spectra from laser-plasma interactions. Phys. Rev. Lett. 98, 105001.Google Scholar
Boyd, T.J.M. & Ondarza-Rovira, R. (2008). Anomalies in universal intensity scaling in ultrarelativistic laser-plasma interactions. Phys. Rev. Lett. 101, 125004.Google Scholar
Brabec, T. & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545591.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Cai, H., Yu, W., S. Zhu, C.Z., Cao, L., Li, B., Chen, Z.Y. & Bogerts, A. (2006). Short-pulse laser absorption in very steep plasma density gradients. Phys. Plasmas 13, 094504.Google Scholar
Chien, C.Y., Fontaine, B.L., Desparois, A., Jiang, Z., Johnston, T.W., Kieffer, J.C., Pepin, H., Vidal, F. & Mercure, H.P. (2000). Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air. Opt. Lett. 25, 578.CrossRefGoogle ScholarPubMed
Corkum, P.B. & Krausz, F. (2007). Attosecond science. Nature Phys. 3, 381387.Google Scholar
Corkum, P.B. (1993). Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.Google Scholar
Dodd, E.S. & Umstadter, D. (2001). Coherent control of stimulated Raman scattering using chirped laser pulses. Phys. Plasmas 8, 3531.CrossRefGoogle Scholar
Dugan, M.A., Tull, J.X. & Warren, W.S. (1997). High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B 14, 2348.CrossRefGoogle Scholar
Estabrook, K.G., Valeo, E.J. & Kruer, W.L. (1975). Two-dimensional relativistic simulations of resonant absorption. Phys. Fluids 18, 1151.CrossRefGoogle Scholar
Faure, J., Marques, J.R., Malka, V., Amiranoff, F., Najmudin, Z., Walton, B., Rousseau, J.P., Ranc, S., Solodov, A. & Mora, P. (2001). Dynamics of Raman instabilities using chirped laser pulses. Phys. Rev. E 63, 065401.Google Scholar
Froud, C.A., Rogers, E.T.F., Hanna, D.C., Brocklesby, W.S., Praeger, M., de Paula, A.M., Baumberg, J.J. & Frey, J.G. (2006). Soft-X-ray wavelength shift induced by ionization effects in a capillary. Opt. Lett. 31, 374.Google Scholar
Gibbon, P. & Bell, A.R. (1992). Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68, 1535.CrossRefGoogle ScholarPubMed
Gibbon, P. (1996). Harmonic generation by femtosecond laser-solid interaction: A coherent water-window light source? Phys. Rev. Lett. 76, 5053.CrossRefGoogle ScholarPubMed
Gibbon, P. (1997). High-order harmonic generation in plasmas. IEEE J. Quan. Electron. 33, 19151924.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter. London: Imperial College Press.CrossRefGoogle Scholar
Kato, S., Bhattacharyya, B., Nishiguchi, A. & Mima, K. (1993). Wave breaking and absorption efficiency for short pulse p-polarized laser light in a very steep density gradient. Phys. Fluids B 5, 564.Google Scholar
Khachatryan, A.G., van Goor, F.A., Verschuur, J.W.J. & Boller, K.J. (2005). Effect of frequency variation on electromagnetic pulse interaction with charges and plasma. Phys. Plasmas 12, 062116.Google Scholar
Kruer, W.L. & Estabrook, K. (1985). J × B heating by very intense laser light. Phys. Fluids 28, 430432.Google Scholar
Larsson, J., Mevel, E., Zerne, R., L'Huillier, A., Wahlstrom, C.G. & Svanberg, S. (1995). Two-colour time-resolved spectroscopy of helium using high-order harmonics. J. Phys. B: At. Mol. Opt. Phys. 28, L53.Google Scholar
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999). Petawatt laser pulses. Opt. Lett. 24, 160162.Google Scholar
Pfeifer, T., Walter, D., Winterfeldt, C., Spielmann, C. & Gerber, G. (2005). Controlling the spectral shape of coherent soft X-rays. Appl. Phys. B 80, 277.Google Scholar
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.CrossRefGoogle ScholarPubMed
Rischel, C., Rousse, A., Uschmann, I., Albouy, P.A., Geindre, J.P., Audebert, P., Gauthier, J.C., Forster, E., Martin, J.L. & Antonetti, A. (1997). Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490492.Google Scholar
Rohwetter, P., Yu, J., Mejean, G., Stelmaszczyk, K., Salmon, E., Kasparian, J., Wolf, J.P. & Woste, L. (2004). Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes. J. Anal. At. Spectrom. 19, 437.Google Scholar
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Toth, C., Shadwick, B.A., van Tilborg, J., Faure, J. & Leemans, W.P. (2003 b). Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10, 2039.Google Scholar
Schroeder, C.B., Esarey, E., Shadwick, B.A. & Leemans, W.P. (2003 a). Raman forward scattering of chirped laser pulses. Phys Plasmas 10, 285.Google Scholar
Sorensen, S., Bjorneholm, O., Hjelte, I., Kihlgren, T., Ohrwall, G., Sundin, S., Svensson, S., Buil, S., Descamps, D., L'Huillier, A., Norin, J. & Wahlstrom, C. (2000). Femtosecond pump-probe photoelectron spectroscopy of predissociative Rydberg states in acetylene. J. Chem. Phys. 112, 80388042.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Comm. 56, 219221.Google Scholar
Thaury, C. & Quéré, F. (2010). High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms. J. Physics B: At. Mol. Opt. Physics 43, 213001.Google Scholar
Thaury, C., Quéré, F., Geindre, J.P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Ŕeau, F., D'Oliveira, P., Audebert, P., Marjoribanks, R. & Martin, P. (2007). Plasma mirrors for ultrahigh-intensity optics. Nature Phys. 3, 424.Google Scholar
Theobald, W., Häßner, R., Wülker, C. & Sauerbrey, R. (1996). Temporally resolved measurement of electron densities (> 1023cm−3) with high harmonics. Phys. Rev. Lett. 77, 298301.Google Scholar
Verluise, F., V. Laude, Z.C. & Ch. Spielmann, P.T. (2000). Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575.CrossRefGoogle ScholarPubMed
von der Linde, D. & Rzazewski, K. (1996). High-order optical harmonic generation from solid surfaces. Appl. Phys. B 63, 499506.Google Scholar
Watts, I., Zepf, M., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Allott, R.M., Clarke, R.J., Neely, D. & Norreys, P.A. (2002). Dynamics of the critical surface in high-intensity laser-solid interactions: modulation of the XUV harmonic spectra. Phys. Rev. Lett. 88, 155001.Google Scholar
Wilks, S.C. & Kruer, W.L. (1997). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE Jour. Quan. Electron. 33, 19541967.CrossRefGoogle Scholar
Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G. & Krushelnick, K. (2008). Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Exp. 16, 21092114.Google Scholar
Zepf, M., Tsakiris, G.D., Pretzler, G., Watts, I., Chambers, D.M., Norreys, P.A., Andiel, U., Dangor, A.E., Eidmann, K., Gahan, C., Machasek, A., Wark, J.S. & Witte, K. (1998). Role of the plasma scale length in the harmonic generation from solid targets. Phys. Rev. E 58, R5253R5256.Google Scholar
Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H.C. & Christov, I.P. (1996). Enhanced High-Harmonic Generation Using 25 fs Laser Pulses. Phys. Rev. Lett. 76, 752.Google Scholar