Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T22:08:49.662Z Has data issue: false hasContentIssue false

Effects of viscosity in modeling laser fusion implosions

Published online by Cambridge University Press:  17 December 2007

W. Manheimer
Affiliation:
RSI Corporation, Lanham, Maryland and Plasma Physics Division, Naval Research Laboratory, Washington, DC
D. Colombant*
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC
*
Address correspondence and reprint requests to: Denis Colombant, Code 6730, Plasma Physics Division, Naval Research Laboratory, Washington DC, 20375. E-mail: denis.colombant@nrl.navy.mil

Abstract

This paper examines the necessity of including ion viscosity in modeling laser fusion implosions. Using the Naval Research Laboratory one-half Mega Joule laser fusion target as an example, it is shown that for virtually the entire implosion up to maximum compression, and the entire rebound after the implosion, ion viscosity is unimportant. However for about half a nanosecond before peak implosion, ion viscosity can have a significant, but by no means dominant effect on both the one-dimensional flow and on the Rayleigh-Taylor instability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1998). Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion Phys. Plasmas 5, 14461454.CrossRefGoogle Scholar
Bodner, S.E. (1974). Rayleigh-Taylor instability and laser-pellet fusion. Phys. Rev. Lett. 33, 761764.CrossRefGoogle Scholar
Braginskii, S.I. (1965). Transport processes in a plasma. Rev. Plasma Phys. 1, 205.Google Scholar
Chandrasekhar, S. (1961). Hydrodynamics and Hydromagnetic Instability. pp. 428480. New York: Dover.Google Scholar
Epperlein, E.M. & Short, R.W. (1991). A practical nonlocal model for heat-transport in laser plasmas. Phys. Fluids B 3, 30923098.CrossRefGoogle Scholar
Huba, J. (2006). NRL Plasma Formulary, available from J. Huba, NRL Plasma Physics Division, Washington, DC20375.CrossRefGoogle Scholar
Kruer, W.L. (2000). Interaction of plasmas with intense lasers. Phys. Plasmas 7, 22702278.CrossRefGoogle Scholar
Li, D., Igumenshchev, I.V. & Goncharov, V.N. (2006). Effects of the ion viscosity on the shock yield and hot-spot formation in ICF targets. Bull. Am. Phys. Soc. 51, 342.Google Scholar
Luciani, J.F., Mora, P. & Virmont, J. (1983). Nonlocal heat-transport due to steep temperature gradients. Phys. Rev. Lett. 51, 16641667.CrossRefGoogle Scholar
Malone, R.C., McCrory, R.L. & Morse, R.L. (1975). Indications of strongly flux-limited electron thermal conduction in laser target experiments. Phys. Rev. Lett. 34, 721724.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. (2004). Beam deposition model for energetic electron transport in inertial fusion: Theory and initial results. Phys. Plasmas 11, 260269.CrossRefGoogle Scholar
Mikaelian, K.O. (1993). Effect of viscosity on Rayleigh-Taylor and Richtmeyer-Meshkov instabilities. Phys. Rev. E 47, 375383.CrossRefGoogle Scholar
Obenschain, S.P., Colombant, D.G., Schmitt, A.J., Sethian, J.D. & McGeoch, M.W. (2006). Pathway to a lower cost high repetition rate ignition facility. Phys. Plasmas 13, 056320.CrossRefGoogle Scholar
Piriz, A.R., Cortazar, O.D., Cela, J.J.L. & Tahir, N.A. (2006). The Rayleigh-Taylor Instability. Am J Phys. 74, 10951098.CrossRefGoogle Scholar
Radha, P.B., Goncharov, V.N., Collins, T.J.B., Delettrez, J.A., Elbaz, Y., Epstein, R., Glebov, V.Y., Goncharov, V.N., Keck, R.L., Knauer, J.P., Marozas, J.A., Marshall, F.J, McCrory, R.L., McKenty, P.W., Meyerhofer, D.D., Regan, S.P., Sangster, T.C., Seka, W., Shvarts, D., Skupsky, S., Srebro, Y. & Stoeckl, C. (2005). Two-dimensional simulations of plastic shell, direct-drive implosions on OMEGA. Phys. Plasmas 12, 032702.CrossRefGoogle Scholar
Schmitt, A.J., Colombant, D.G., Velikovich, A.L., Zalesak, S.T., Gardner, J.H., Fyfe, D.E. & Metzler, N. (2004). Large-scale high-resolution simulations of high-gain direct-drive inertial confinement fusion targets. Phys. Plasmas 11, 27162722.CrossRefGoogle Scholar
Sunahara, A., Delettrez, J.A. & Stoeckel, C. (2003). Time-dependent electron thermal flux inhibition in direct-drive laser implosions. Phys. Rev. Lett. 91, 095003.CrossRefGoogle ScholarPubMed
Takabe, H., Montierth, L. & Morse, R.L. (1983). Self-consistent eigenvalue analysis of Rayleigh-Taylor instability in an ablating plasma. Phys. Fluids 26, 22992307.CrossRefGoogle Scholar
Weber, S.V., Glendinning, S.G., Kalantar, D.H., Key, M.H., Remington, B.A., Rotheneberg, J.E., Wolfrum, E., Verdon, C.P. & Knauer, J.P. (1997). Simulations of laser imprint for nova experiments and for ingnition capsules. Phys. Plasmas 4, 19781984.CrossRefGoogle Scholar