Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T00:36:57.371Z Has data issue: false hasContentIssue false

Efficient hard X-ray source using femtosecond plasma at solid targets with a modified surface

Published online by Cambridge University Press:  01 July 2004

S.A. GAVRILOV
Affiliation:
International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, Russia Department of Material Science, Moscow Institute of Electronic Technology, Zelenograd, Moscow, Russia
D.M. GOLISHNIKOV
Affiliation:
International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, Russia
V.M. GORDIENKO
Affiliation:
International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, Russia
A.B. SAVEL'EV
Affiliation:
International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, Russia
R.V. VOLKOV
Affiliation:
International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, Russia

Abstract

Recent results on constructing of an efficient hard X-ray source using solid targets irradiated by high-contrast 200-fs laser pulses with an intensity above 1016 W/cm2 are presented. We used different solid targets with a laser- and electrochemically modified surface layer: craters, pyramidal cavities, porous silicon, gratings. Experimental data obtained confirms that using solid targets with a corrugated surface one can achieve a prominent increase both in the efficiency of hard X-ray generation (in the quanta range 2–30 keV) and in the hot electron temperature of plasma.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Gamaly, E.G. & Novikov, V.N. (1992). Dense plasma heating by an ultrashort laser pulse in the regime of anomalous skin-effect, Sov. Phys. JETP, 74, 963973.Google Scholar
Brunel, F. (1987). Not-So-Resonant, Resonant Absorption. Phys. Rev. Lett., 59, 5255.Google Scholar
Chutko, O.V., Golishnikov, D.M., Gordienko, V.M., Mikheev, P.M., Savel'ev, A.B., Volkov, R.W. & Sevast'yanov V.D. (2001). Observation of thermonuclear neutrons emitted from dense femtosecond plasma at moderate intensities. Laser Part. Beams, 19, 209213.Google Scholar
Gauthier, J.-C.J., Bastiani, S., Audeberg, P., Geindre, J.P., Neuman, K., Donelly, T., Hoffer, M., Falcone, R.W., Shepherd, R., Price, D., White, B. (1995). Femtosecond laser-produced plasma x-rays from periodically modulated surface targets. Proc. SPIE, Eds. M. Richardson and G. Kyrala, 2523, 242253.
Gibbon, P. and Bell, A.R. (1992). Collisionless Absorption in Sharp-Edged Plasmas. Phys. Rev. Lett, 68, 15351539.Google Scholar
Gibbon, P., Forster, E. (1996). Short-pulse laser-plasma interaction. Plasma Phys. Controlled Fusion, 38, 769794Google Scholar
Golishnikov, D.M., Gordienko, V.M., Mikheev, P.M., Savel'ev, A.B., Volkov, R.V. (2001). Dense Femtosecond Plasma at Moderate Intensities: Hot Electrons, Fast Ions, and Thermonuclear Processes in Modified Targets, Laser Physics, 11, No 9, 17.Google Scholar
Gordienko, V.M. & Savel'ev, A.B. (1999). Femtosecond plasma in dense nanostructure targets: new approaches and prospects. Phys. Uspekhi, 42, 7274.Google Scholar
Gordienko, V.M., Lachko, I.M., Mikheev, P.M., Savel'ev, A.B., Uryupina, D.S., Volkov, R.V. (2002). Experimental characterization of hot electron production under femtosecond laser plasma interaction at moderate intensities. Plasma Phys. Control. Fusion, 44, 25552568.Google Scholar
Gordienko, V.M., Golishnikov, D.M., Lachko, I.M, Savel'ev, A.B., Volkov, R.V. (2003). Energetic particle production with femtosecond laser modified surface target, Proc. of Int. Symposium Topical Problems of Nonlinear Wave Physics, pp. 141142, Nizhniy Novgorod, Russia. Institute of Applied Physics, 2003.
Gordon, S.P., Donnelly, T., Sullivan, Hamster, A.H., Falcone, R.W. (1994). X rays from microstructured targets heated by femtosecond lasers. Optics Lett., 19, 484486.Google Scholar
Guilietti, D., Gizzi, L.A. (1998). X-ray emission from laser-produced plasmas. La Rivista del Nuovo Cimento, 21, iss. 10, 193.Google Scholar
Hironaka, Y., Fujimoto, Y., Nakamura, K.G., Kondo, K., Yoshida, M. (1999). Enhancement of hard x-ray emission from a copper target by multiple shots of femtosecond laser pulses. Appl. Phys. Lett., 74, 16451647.Google Scholar
Kulcsar, G., AlMawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L., Marjoribanks, R.S. (2000). Intense Picosecond X-Ray Pulses from Laser Plasmas by Use of Nanostructured “Velvet” Targets. Phys. Rev. Lett., 84, 51495152.Google Scholar
Murnane, M.M., Kapteyn, H.C., Falcone, R.W. (1989). High-Density Plasmas Produced by Ultrafast Laser Pulses. Phys. Rev. Lett., 62, 155158.Google Scholar
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N., Serikawa, T. (1997). X-ray generation enhancement from a laser-produced plasma with a porous silicon target. Appl. Phys. Lett., 70, 16531655.Google Scholar
Nishikawa, T., Nakano, H., Oguri, N., Uesugi, N., Nakao, M., Nishio, K., Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated fromfemtosecond-laser-produced plasma. Appl. Phys. B, 73, 185188.Google Scholar
Reich, Ch., Gibbon, P., Uschmann, I., Forster, E. (2001). Numerical studies on the properties of femtosecond laser plasma Kα sources. Laser Part. Beams, 19, 147150.Google Scholar
Salzmann, D., Reich, Ch., Uschmann, I., Forster, E. (2002). Theory of Kα generation by femtosecond laser-produced hot electrons in thin foils. Phys.Rew. E, 65, 036402-1036402-5.Google Scholar
Sangwal, K. (1987). Etching of Crystals: Theory, Experiment, and Application, Amsterdam: North-Holland
Volkov, R.V., Gordienko, V.M., Dzhidzhoev, M.S., Mikheev, P.M., Savel'ev, A.B., Shashkov, A.A. (1997). Control of the properties and diagnostics of a dense femtosecond plasma formed from modified targets. Quantum Electron., 27, 10811093.Google Scholar
Volkov, R.V., Gordienko, V.M., Dzhidzhoev, M.S., Kamenev, B.V., Kashkarov, P.K., Ponomarev, Yu.V., Savel'ev, A.B., Timoshenko, V.Yu., Shashkov, A.A. (1998). Generation of hard x-ray radiation of porous silicon with ultraintense femtosecond laser pulses. Quantum Electron., 28, 12.Google Scholar
Volkov, R.V., Golishnikov, D.M., Gordienko, V.M., Mikheev, P.M., Savel'ev, A.B., Sevast'yanov, V.D., Chernysh, V.S., Chutko, O.V. (2000). Neutron Generation in Dense Femtosecond Laser Plasma of a Structured Solid Target, JETP Lett, 72, 401404.Google Scholar
Volkov, R.V., Gordienko, V.M., Lachko, I.M., Mikheev, P.M., Mar'in, B.V., Savel'ev, A.B., Chutko, O.V. (2002). Generation of High-Energy Negativ Hydrogen Ions upon the Interaction of Superintense Femtosecond Laser Radiation with a Solid Target. JETP Lett, 76, 139142.Google Scholar
Volkov, R.V., Golishnikov, D.M., Gordienko, V.M., Savel'ev, A.B. (2003). Overheated Plasma at the Surface of a Target with a Periodic Structure Induced by Femtosecond Laser Radiation. JETP Letters, 77, No.9, 473476.Google Scholar
Wulker, C., Theobald, W., Gnass, D.R., Schafer, F.P., Bakos, J.S., Sauerbrey, R., Gordon, S.P., Falcone, R.W. (1996). Soft x-ray emission from plasmas produced by ultraintense KrF-laser pulses in colloidal Al. Appl. Phys. Lett., 68, 13381340.Google Scholar