Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T21:04:39.915Z Has data issue: false hasContentIssue false

Electron and proton beams produced by ultra short laser pulses in the relativistic regime

Published online by Cambridge University Press:  01 October 2004

V. MALKA
Affiliation:
Laboratoire d'Optique Appliquée–ENSTA, CNRS UMR, Ecole Polytechnique, Chemin de la Humiére, Palaiseau, France
S. FRITZLER
Affiliation:
Laboratoire d'Optique Appliquée–ENSTA, CNRS UMR, Ecole Polytechnique, Chemin de la Humiére, Palaiseau, France

Abstract

It is known that relativistic laser plasma interactions can already today induce accelerating fields beyond some TV/m, which are indeed capable to efficiently accelerate plasma background electrons as well as protons. An introduction to the current state of the art will be given and possible applications of these optically induced charged particle sources will be discussed.

Type
INTERNATIONAL WORKSHOP ON LASER AND PLASMA ACCELERATORS
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was delivered at the International Workshop on Laser and Plasma Accelerators, held at Portovenere, Italy, September 29 to October 3, 2003.

References

REFERENCES

Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 5.Google Scholar
Fourkal, E., Shahine, B., Ding, M., Li, J.S., Tajima, T. & Ma, C.-M. (2002). Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29, 12.Google Scholar
Fourkal, E., Li, J.S., Ding, M., Tajima, T. & Ma, C.-M. (2003). Particle selection for laser-accelerated proton therapy feasibility study. Med. Phys. 30, 7.Google Scholar
Fritzler, S., Ta Phuoc, K., Rousse, A. & Lefebvre, E. (2003a). Ultrashort electron bunches generated with high intensity lasers: Applications to injector and X-ray sources. Appl. Phys. Lett. 83, 10.Google Scholar
Fritzler, S., Lefebvre, E., Malka, V., Burgy, F., Dangor, A.E., Krushelnick, K., Mangles, S.P.D. & Najmudin, Z. (2003b). Beam quality in the laser-plasma accelerator concept. Phys. Rev. Lett. 92, 16S006.Google Scholar
Fritzler, S., Malka, V, Grillon, G., Rousseau, J.-P., Burgy, F., Lefebvre, E., D'humiere, E., Mc Kenna, P. & Ledingham, K.W.D. (2003c). Proton beams generated with high intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 15.Google Scholar
Gauduel, Y., Hallou, A., Fritzler, S., Grillon, G., Chambaret, J.P., Rousseau, J.P., Burgy, F., Hulin, D. & Malka, V. (2004). Real-time observation of relativistic electron induced radical events in water. Submitted to Phys. Chem.Google Scholar
Joshi, C. & Katsouleas, T. (2003). Plasma accelerators at the energy frontier and on table-tops. Phys. Today 47, June 2003.Google Scholar
Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, Cs., Van Tilborg, J., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J. & Martin, M.C. (2003). Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802.Google Scholar
Leemans, W.P., Catravas, P., Esarey, E., Geddes, C.G.R., Toth, C., Trines, R., Schroeder, C.B., Shadwick, B.A., Van Tilborg, J. & Faure, J. (2002). Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802.Google Scholar
Ma, C.-M., Fourkal, E., Li, J.S., Ding, M. & Tajima, T. (2001). Laser accelerated proton beams for radiation therapy. Med. Phys. 28, 1236.Google Scholar
Malka, V., Faure, J., Marques, J.R., Amiranoff, F., Rousseau, J.P., Ranc, S., Chambaret, J.P., Najmudin, Z., Walton, B., Mora, P. & Solodov, A. (2001). Characterization of electron beams produced by ultra-short (30 fs) laser pulses. Phys. Plasmas 8, 6.Google Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron Acceleration by a Wakefield forced by an Intense Ultra-Short Laser Pulse, Science 22, 1596.Google Scholar
Malka, V, Fritzler, S., Lefebvre, E., D'humieres, E., Ferrand, R., Burgy, F., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.-P., Antonetti, A. & Hulin, D. (2004). practability of protontherapy using compact laser systems. Medical Physics 31, 6.Google Scholar
Najmudin, Z., Krushelnick, K., Clark, E.L., Mangles, S.P.D., Walton, B., Dangor, A.E., Fritzler, S., Malka, V., Lefebvre, E., Gordon, D., Tsung, F.S. & Joshi, C. (2003). Self-modulated and forced laser wake field acceleration of electrons. Phys. Plasmas 10, 15.Google Scholar
Pittman, M., Ferré, S., Rousseau, J.P., Notebaert, L., Chambaret, J.P. & Chériaux, G. (2002). Design and characterization of a near limited diffraction femtosecond 100 TW-10 Hz high intensity laser system. Appl. Physics B. 74, 529.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field acceleration: the highly non linear broken wave regime. Appl. Phys. B 74, 355.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Comm. 56, 219.Google Scholar
Tajima, T. & Dawson, J. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Yamazaki, Y., Kurihara, T., Kobayashi, H., Sato, I. & Asami, A. (1992). High-precision pepper-pot technique for a low emittance electron beam. NIM A 322, 139.Google Scholar