Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:23:48.542Z Has data issue: false hasContentIssue false

Excitation of wakefield in a rectangular waveguide: Comparative study with different microwave pulses

Published online by Cambridge University Press:  08 January 2009

A.K. Aria
Affiliation:
Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi, India
H.K. Malik*
Affiliation:
Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi, India
K.P. Singh
Affiliation:
Simutech, Gainesville, Florida
*
Address correspondence and reprint requests to: H.K. Malik, Plasma Waves and Particle Acceleration Laboratory, Department of Physics, Indian Institute of Technology, Delhi 110016, India. E-mail: hkmalik@physics.iitd.ac.in

Abstract

A differential equation governing the wakefield potential (φ) in a plasma filled rectangular waveguide is derived analytically. This equation is solved numerically for the wakefield (Ew) generated with the help of three kinds of microwave pulses, namely sine pulse (SP), rectangular Gaussian pulse (RGP), and rectangular triangular pulse (RTP). The effect of microwave frequency (f), pulse duration (τ), waveguide width (b), equilibrium plasma density (n0), and microwave intensity (I) on the amplitude of the wakefield is studied. This amplitude is increased for the longer pulse duration and higher microwave intensity, but is decreased with growing waveguide width for all types of pulses. With regard to the variation of wakefield amplitude with plasma density, the RTP and SP behave in a similar fashion and the RGP behaves oppositely. The amplitude for the case of RGP gets increased with the plasma density. The amplitude is enhanced at larger microwave frequency for the cases of RGP and SP, but is decreased for the case of RTP. The comparative study of three types of pulses shows that the wakefield with larger amplitude is achieved with the help of rectangular triangular pulse, which is found to be sensitive with waveguide width, pulse duration and microwave intensity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, N.E., Chegotov, M.V. & Veisman, M.E. (2000). Wakefield generation by elliptically polarized femtosecond laser pulse in ionizing gases. IEEE Trans. Plasma Sci. 28, 10981105.CrossRefGoogle Scholar
Aria, A.K. & Malik, H.K. (2008). Wakefield generation in a plasma filled rectangular waveguide. Open Plasma Phys. J. 1, 18.CrossRefGoogle Scholar
Baiwen, L.I., Ishiguro, S., Skoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.CrossRefGoogle Scholar
Balakirev, V.A., Karas, V.I., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Cros, B., Courtois, C., Malka, G., Matthieussent, G., Marques, J.R., Dorchies, F., Amiranoff, F., Rebibo, S., Hamoniaux, G., Blanchot, N. & Miquel, J.L. (2000). Extending plasma accelerators: Guiding with capillary tubes. IEEE Trans. Plasma Sci. 28, 10711077.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gorbunov, L.M., Mora, P. & Ramazashvili, R.R. (2003 a). Laser surface wakefield in a plasma column. Phys. Plasmas 10, 45634566.CrossRefGoogle Scholar
Gorbunov, L.M., Mora, P. & Solodov, A.A. (2003 b). Dynamics of a plasma channel created by the wakefield of a laser pulse. Phys. Plasmas 10, 11241134.CrossRefGoogle Scholar
Jing, C., Liu, W., Xiao, L., Gai, W. & Schoessow, P. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Phys. Rev. E. 6, 016502 (16).Google Scholar
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from Tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117123.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kingham, R.J. & Bell, A.R. (1997). Enhanced wakefields for the 1D Laser wakefield Accelerator. Phys. Rev. Lett. 79, 48104813.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Lotov, K.V. (2001). Laser wakefield acceleration in narrow plasma-filled channels. Laser Part. Beams 19, 219222.CrossRefGoogle Scholar
Malik, H.K. (2008). Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration. J. Appl. Phys. 104, 053308(1–7).CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Nishida, Y. & Sato, N. (1987). Observation of high-energy electrons accelerated by electrostatic waves propagating obliquely to a magnetic field. Phys. Rev. Lett. 59, 653656.CrossRefGoogle ScholarPubMed
Nishida, Y. & Shinozaki, T. (1990). Resonant wave-particle interaction in v p x B acceleration scheme. Phys. Rev. Lett. 65, 23862389.CrossRefGoogle ScholarPubMed
Nishida, Y., Kusaka, S. & Yugami, N. (1994). Excitation of wakefield and electron acceleration by short microwave pulse. Phys. Scripta T52, 6568.CrossRefGoogle Scholar
Nishida, Y., Okazaki, T., Yugami, N. & Nagasawa, T. (1991). Excitation of large-amplitude ion-wave wake fields. Phys. Rev Lett. 66, 23282332.CrossRefGoogle ScholarPubMed
Nishida, Y., Yoshizumi, M. & Sugihara, R. (1985). Electron acceleration by electromagnetic waves in weakly magnetized inhomogeneous plasma. Phys. Fluids 28,15741576.CrossRefGoogle Scholar
Park, S.Y. & Hirshfield, J.L. (1997). Theory of wakefields in a dielectric-lined waveguide. Phys. Rev. E 62, p. 12661283.CrossRefGoogle Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B., Peñano, J.R., Hubbard, R.F., Ting, A., Moore, C.I., Gordon, D.F., Zigler, A., Kaganovich, D. & Antonsen, T.M. Jr. (2001). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. 63, 056405(111).Google ScholarPubMed
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253257.CrossRefGoogle Scholar
Yoder, R.B., Marshall, T.C. & Hirshfield, J.L. (2001). Energy-gain measurements from a microwave inverse free-electron-laser accelerator. Phys. Rev. Lett. 86, 17651768.CrossRefGoogle ScholarPubMed
Zhang, T.B., Hirshfield, J.L., Marshall, T.C. & Hafizi, B. (1997). Stimulated dielectric wake-field accelerator. Phys. Rev. E 56, 46474655.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar