Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:33:17.795Z Has data issue: false hasContentIssue false

Experimental investigation of fast electron transport in solid density matter: Recent results from a new technique of X-ray energy-encoded 2D imaging

Published online by Cambridge University Press:  29 September 2009

L. Labate*
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy
E. Förster
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
A. Giulietti
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
D. Giulietti
Affiliation:
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy Dipartimento di Fisica, Universitá di Pisa, Italy
S. Höfer
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
T. Kämpfer
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
P. Köster
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
M. Kozlova
Affiliation:
Department of X-ray Lasers, PALS Centre-Institute of Physics, Prague, Czech Republic
T. Levato
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy
R. Lötzsch
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
A. Lübcke
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
T. Mocek
Affiliation:
Department of X-ray Lasers, PALS Centre-Institute of Physics, Prague, Czech Republic
J. Polan
Affiliation:
Department of X-ray Lasers, PALS Centre-Institute of Physics, Prague, Czech Republic
B. Rus
Affiliation:
Department of X-ray Lasers, PALS Centre-Institute of Physics, Prague, Czech Republic
I. Uschmann
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
F. Zamponi
Affiliation:
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany
L.A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati, Italy
*
Address correspondence and reprint requests to: L. Labate, Intense Laser Irradiation Laboratory, IPCF, Consiglio Nazionale delle Ricerche, Pisa, Italy. E-mail: luca.labate@ipcf.cnr.it

Abstract

The development activity of a new experimental technique for the study of the fast electron transport in high density matter is reported. This new diagnostic tool enables the X-ray 2D imaging of ultrahigh intensity laser plasmas with simultaneous spectral resolution in a very large energy range to be obtained. Results from recent experiments are discussed, in which the electron propagation in multilayer targets was studied by using the Kα. In particular, results highlighting the role of anisotropic Bremsstrahlung are reported, for the sake of the explanation of the capabilities of the new diagnostics. A discussion of a test experiment conceived to extend the technique to a single-shot operation is finally given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.CrossRefGoogle Scholar
Batani, D. (2002). Transport in dense matter of relativistic electron produced in ultra-high-intensity laser interactions. Laser Part. Beams 20, 321336.CrossRefGoogle Scholar
Baton, S.D., Koenig, M., Fuchs, J., Benuzzi-Mounaix, A., Guillou, P., Loupias, B., Vinci, T., Gremillet, L., Rousseaux, C., Drouin, M., Lefebvre, E., Dorchies, F., Fourment, C., Santos, J.J., Batani, D., Morace, A., Redaelli, R., Nakatsutsumi, M., Kodama, R., Nishida, A., Ozaki, N., Norimatsu, T., Aglitskiy, Y., Atzeni, S. & Schiavi, A. (2008). Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets. Phys. Plasma 15, 042706.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Dews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser-solid interactions up to 1019 W/cm−2. Phys. Plasmas 4, 447457.CrossRefGoogle Scholar
Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Contr. Fusion 39, 653659.CrossRefGoogle Scholar
Bootsma, T.M.V., van Zwet, E.J., Brinkman, A.G., den Herder, J.W., de Jong, L., de Korte, P. & Olsthoorn, S.M. (2000). Synchrotron calibration and response modelling of back-illuminated xmm-rgs ccds. Nucl. Instr. Meth. Phys. Res. A 439, 575581.CrossRefGoogle Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Chen, L.M., Zhang, J., Li, Y.T., Teng, H., Liang, T.J., Sheng, S.M., Dong, Q.L., Zhao, L.Z., Wei, Z.Y. & Tang, X.W. (2001). Effects of laser polarization on jet emission of fast electrons in femtosecond-laser plasmas. Phys. Rev. Lett. 87, 225001.CrossRefGoogle ScholarPubMed
Davies, J.R. (2004). Alfvèn limit in fast ignition. Phys. Rev. E 69, 065402.CrossRefGoogle ScholarPubMed
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008 a). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008 b). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 507–507.CrossRefGoogle Scholar
Evans, R.G. (2006). Modelling short pulse, high intensity laser plasma interactions. Hi. Ener. Density Phys. 2, 3547.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dobosz Dufrenoy, S., Ceccotti, T., Monot, P., Reau, F., Popescu, H., D'Oliveira, P., Martin, P., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultrashort laser interaction. Laser Part. Beams 26, 6982.CrossRefGoogle Scholar
Freeman, R., Anderson, C., Hill, J.M., King, J., Snavely, R., Hatchett, S., Key, M., Koch, J., MacKinnon, A., Stephens, R. & Cowan, T. (2003). Understanding the role of fast electrons in the heating of dense matter: Experimental techniques and recent results. J Quant. Spectr. Rad. Trans 81, 183190.CrossRefGoogle Scholar
Gizzi, L.A., Giulietti, A., Giulietti, D., Audebert, P., Bastiani, S., Geindre, J.P. & Mysyrowicz, A. (1996). Simultaneous measurements of hard X-rays and second-harmonic emission in fs laser-target interactions. Phys. Rev. Lett. 76, 22782281.CrossRefGoogle ScholarPubMed
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasma 9, 941948.CrossRefGoogle Scholar
Honrubia, J.J., Alfonsìn, C., Alonso, L., Pèrez, B. & Cerrada, J.A. (2006). Simulations of heating of solid targets by fast electrons. Laser Part. Beams 24, 217222.CrossRefGoogle Scholar
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129135.CrossRefGoogle Scholar
Huang, T.X., Nakai, M., Shiraga, H., Azechi, H., Huang, T.X., Ding, Y.K. & Zheng, Z.J. (2006). Ultrafast X-ray imaging with sliced sampling streak cameras. Rev. Sci. Instr. 77, 026105.CrossRefGoogle Scholar
Key, M.H., Adam, J.C., Akli, K.U., Borghesi, M., Chen, M.H., Evans, R.G., Freeman, R.R., Habara, H., Hatchett, S.P., Hill, J.M., Heron, A.ad King, J.A., Kodama, R., Lancaster, K.L., MacKinnon, A.J., Patel, P., Phillips, T., Romagnani, L., Snavely, R.A., Stephens, R., Stoeckl, C., Townn, T., Toyama, Y., Zhang, B., Zepf, M. & Norreys, P.A. (2008). Fast ignition relevant study of the flux of high-intensity laser-generated electrons via a hollow cone into a laser-imploded plasma. Phys. Plasmas 15, 022701.CrossRefGoogle Scholar
King, J.A., Akli, K., Snavely, R.A., Zhang, B., Key, M.H., Chen, C.D., Chen, M., Hatchett, S.P., Koch, J.A., MacKinnon, A.J., Patel, P.K., Phillips, T., Town, R.P.J., Freeman, R.R., Borghesi, M., Romagnani, L., Zepf, M., Cowan, T., Stephens, R., Lancaster, K.L., Murphy, C.D., Norreys, P. & Stoeckl, C. (2005). Characterization of a picosecond laser generated 4.5 KeV Ti K-alpha source for pulsed radiography. Rev. Sci. Instr. 76, 076102.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Köster, P., Akli, K., Batani, D., Baton, S., Evans, R.G., Giulietti, A., Giulietti, D., Gizzi, L.A., Green, J.S., Koenig, M., Labate, L., Morace, A., Norreys, P., Perez, F., Waugh, J., Woolsey, N. & Lancaster, K.L. (2009). Experimental investigation of fast electron transport through Kα imaging and spectroscopy in relativistic laser-solid interactions. Plasma Phys. Contr. Fusion 51, 014007.CrossRefGoogle Scholar
Labate, L., Cecchetti, C.A., Galimberti, M., Giulietti, A., Giulietti, D. & Gizzi, L.A. (2005). Detailed characterization of the early X-ray emission of a plasma produced by point-like laser irradiation of solid Al targets. Phys. Plasma 12, 083101.CrossRefGoogle Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Köster, P., Laville, S. & Tomassini, P. (2004). Ray-tracing simulations of a bent crystal X-ray optics for imaging using laser-plasma X-ray sources. Laser Part. Beams 22, 253259.CrossRefGoogle Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Köster, P., Tomassini, P. & Gizzi, L.A. (2007 a). Study of forward accelerated fast electrons in ultrashort Ti Kα sources. Appl. Phys. B 86, 229233.CrossRefGoogle Scholar
Labate, L., Giulietti, A., Giulietti, D., Köster, P., Levato, T., Gizzi, L.A., Zamponi, F., Lübcke, A., Kämpfer, T., Uschmann, I. & Förster, E. (2007 b). Novel X-ray multispectral imaging of ultraintense laser plasmas by a single-photon charge coupled device based pinhole camera. Rev. Sci. Instr. 78, 103506.CrossRefGoogle ScholarPubMed
Labate, L., Levato, T., Galimberti, M., Giulietti, A., Giulietti, D., Sanna, M., Traino, C., Lazzeri, M. & Gizzi, L.A. (2008). A single-photon ccd-based setup for in situ measurement of the X-ray spectrum of mammographic units. Nucl. Instr. Meth. Phys. Res. A 594, 278282.CrossRefGoogle Scholar
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnick, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norreys, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5×1020 W/cm−2. Phys. Rev. Lett. 98, 125002.CrossRefGoogle Scholar
Levato, T., Labate, L., Galimberti, M., Giulietti, A., Giulietti, D. & Gizzi, L.A. (2008). Detailed analysis of events from high-energy X-ray photons impinging on a two-phase front-illuminated ccd. Nucl. Instr. Meth. Phys. Res. A 592, 346353.CrossRefGoogle Scholar
Li, Y.T., Yuan, X.H., Xu, M.H., Zheng, Z.Y., Sheng, Z.M., Chen, M., Ma, Y.Y., Liang, W.X., Yu, Q.Z., Zhang, Y., Liu, F., Wang, Z.H., Wei, Z.Y., Zhao, W., Jin, Z. & Zhang, J. (2006). Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 96, 165003.CrossRefGoogle ScholarPubMed
Missalla, T., Uschmann, I., Förster, E., Jenke, G. & von der Linde, D. (1999). Monochromatic focusing of subpicosecond X-ray pulses in the kev range. Rev. Sci. Instr. 70, 12881299.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nishimura, H., Kawamura, T., Matsui, R., Ochi, Y., Okihara, S., Sakabe, S., Koike, F., Johzaki, T., Nagatomo, H., Mima, K., Uschmann, I. & Förster, E. (2003). Kα spectroscopy to study energy transport in ultrahigh-intensity laser produced plasmas. J. Quan. Spectr. Rad. Trans. 81, 327337.CrossRefGoogle Scholar
Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, F., Beg, F.N., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, P., McCanny, T., Singhal, R.P., Ledingham, K.W.D., Creswell, A., Sanderson, D.C.W., Magill, J., Machacek, A., Wark, J., Allott, R., Kennedy, B. & Neely, D. (1999). Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasma 6, 21502156.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Taguchi, T., Miyamoto, S. & Kishimoto, Y. (1998). Particle simulation on X-ray emissions from ultra-intense laser produced plasmas. Phys. Plasma 5, 43664372.CrossRefGoogle Scholar
Sheng, Z.M., Sentoku, Y., Mima, K., Zhang, J., Yu, W. & Meyer-ter Vehn, J. (2000). Angular distributions of fast electron, ions, and bremsstrahlung X/γ-rays in intense laser interaction with solid targets. Physi. Revi. Lett. 85, 53405343.CrossRefGoogle ScholarPubMed
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams 24, 231234.CrossRefGoogle Scholar
Stoeckl, C., Theobald, W., Sangster, T.C., Key, M.H., Patel, P., Zhang, B.B., Clarke, R., Karsch, S. & Norreys, P. (2004). Operation of a single-photon-counting X-ray charge-coupled device camera spectrometer in a petawatt environment. Rev. Sci. Instr. 75, 37053707.CrossRefGoogle Scholar
Tabak, M., Clark, D.S., Hatchett, S.P., Key, M.H., Lasinski, B.F., Snavely, R.A., Wilks, S.C., Town, R.P.J., Stephens, R., Campbell, E.M., Kodama, R., Mima, K., Tanaka, K.A., Atzeni, S. & Freeman, R. (2005). Review of progress in fast ignition. Phys. Plasma 12, 057305.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasma 1, 16261634.CrossRefGoogle Scholar
Tommasini, R., Koch, J.A., Izumi, N., Welser, L.A., Mancini, R.C., Delettrez, J., Regan, S. & Smalyuk, V. (2006). Multispectral X-ray imaging for core temperature and density maps retrieval in direct drive implosions. Rev. Sci. Instr. 77, 10E303.CrossRefGoogle Scholar
Young, B.K.F., Osterheld, A.L., Price, D.F., Sheperd, R., Stewart, R.E., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Flora, F., Bollanti, S., Lazzaro, P.D., Letardi, T., Grilli, A., Palladino, L., Reale, A., Scafati, A. & Reale, L. (1998). High-resolution X-ray spectrometer based on spherically bent crystals for investigations of femtosecond laser plasmas. Rev. Sci. Instr. 69, 40494053.CrossRefGoogle Scholar
Zamponi, F.A., Lübcke, A., Kämpfer, T., Uschmann, I., Förster, E., Giulietti, A., Giulietti, D., Köster, P., Labate, L., Levato, T. & Gizzi, L.A. (2009). Directional bremsstrahlung from a Ti laser-produced X-ray source at relativistic intensities in the 3–10 KeV range. Phys. Rev. Lett.Google Scholar
Zamponi, F., Kämpfer, T., Morak, A., Uschmann, I. & Förster, E. (2005). Characterization of a deep depletion, back-illuminated charge-coupled device in the X-ray range. Rev. Sci. Instr. 76, 116101.CrossRefGoogle Scholar
Zhong, J., Shiraga, H. & Azechi, H. (2008). One-dimensional and multichannels multi-imaging X-ray streak camera for imploded core plasma of shell-cone target. Rev. Sci. Instr. 79, 10E907.CrossRefGoogle ScholarPubMed