Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T14:11:16.415Z Has data issue: false hasContentIssue false

Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments

Published online by Cambridge University Press:  03 May 2013

Heinrich Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*
Address correspondence and request for reprints to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au

Abstract

Aiming breakeven for nuclear fusion energy needs a more than 1000 times higher fusion gain. This may be achieved as the anomalously high jump of gains known from the discovery of volume ignition since 1978. This is considered for combination with the present most advanced experiments at the world highest class laser of NIF.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Jap. J. Appl. Phys. 34, 19801992.CrossRefGoogle Scholar
Banks, Michael. (2013). NIF future faces uncertainty. Phys. World 26, 9.Google Scholar
Clery, D. (2012). Ignition facility misses goal, ponders new course. Science 337, 1444.CrossRefGoogle ScholarPubMed
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. (London A) 213, 7286.Google Scholar
Glenzer, S.H., Moses, E., et al. (2011). Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004/1–5.Google ScholarPubMed
Hoffmann, D.H.H., Blasevic, A., Ni, P., Rosmej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udera, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams. Laser Part. Beams 23, 4754.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy losses of heavy ions in a plasma target. Phys. Rev. A 42, 23132317.CrossRefGoogle Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New Work: John Wiley.Google Scholar
Hora, H. (1987). Volume ignition in pellet fusion to overcome the difficulties of central ignition. Z. Naturforsc. 42A, 12391240.CrossRefGoogle Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2000). Laser Plasma Physics: Forces and the Nonlinearity Principle. Bellingham: SPIE Press.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H, Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume igntion for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Miley, G. M., Ghoranneviss, M., Malkynia, B.Azizi, N. & He, X.-T. (2012). Fusion energy without radioactivity: laser ignition of solid hydrogen-boron(11) fuel. Ener. Environm. Sci. 3, 479486.CrossRefGoogle Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Z. f. Naturforsch. A33, 890894.CrossRefGoogle Scholar
Lackner, K., Colgate, S., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek, A.G. (1994). Equilibrium ignition for ICF capsules. In Laser Interaction and Related Plasma Phenomena (Miley, G.H., Ed.). New York: American Institute of Physics, 356361.Google Scholar
Lalousis, P., Hora, H., Eliezer, S., Martinez-Val, J.-M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock mechanisms by ultrahigh laser accelerates plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885888.CrossRefGoogle Scholar
Lindl, J.D. (2005). The Edward Teller Medal Lecture: The evolution toward indirect drive and two decades of progress toward ignition and burn. In Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. & Miley, G.H., Eds.). London: Imperial College Press, 121147.CrossRefGoogle Scholar
Meyer-Ter-Vehn, J. (1996). Plasma Physics and Controlled Fusion 1994. Vienna: IAEA. Vol. 3, p. 3.Google Scholar
Moses, E. (2008). Ignition on the National Ignition Facility. J. Phys.: Conf. Ser. 112, 12003/1–4.Google Scholar
Nakai, S. (2008). Progress on ICF by laser driving. Report Prague of the International Atomic Energy Agency (IAEA) (G. Mank & M. Kalal, Eds.), Vienna/Austria, May 2008.Google Scholar
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A,, Jacobs., S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A, Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G.Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasma 3, 21082112.CrossRefGoogle Scholar
Stening, R.J., Khoda-Bakhsh, R., Pieruschka, P., Kasotakis, G., Kuhn, E., Miley, G.H. & Hora, H. (1992). Laser Interaction and Related Plasma Phenomena (Miley, G.H. & Hora, H., Eds.). New York: Plenum Press, Vol. 10, p. 347.Google Scholar
Storm, E. (1986). Press Conference LLNL, 16 January.Google Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W.Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in Laboratory High-Gain ICF: Progress for the Future. Livermore: LLNL Report 47312.Google Scholar