Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:42:30.907Z Has data issue: false hasContentIssue false

Far-field properties of a vortex Airy beam

Published online by Cambridge University Press:  27 November 2012

Rui-Pin Chen*
Affiliation:
School of Sciences, Zhejiang A & F University, Lin'an, Zhejiang Province, China
Khian-Hooi Chew
Affiliation:
Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
*
Address correspondence and reprint requests to: Rui-Pin Chen, School of Sciences, Zhejiang A & F University, Lin'an, Zhejiang Province 311300, China. E-mail: chenrp123@gmail.com

Abstract

Analytical far-field expressions for the transverse electric mode and transverse electric magnetic mode terms, and the energy flux distributions of vortex Airy beams are derived based on the vector angular spectrum of the beam and the stationary phase method. The physical pictures of vortex Airy beams from the vectorial structure are illustrated and the energy flux distributions are demonstrated in far-field. The influences of the beam parameters, especially the exponential factor, on the energy flux distributions of vortex Airy beams and its transverse electric mode and transverse electric magnetic mode terms are discussed. This work provides a new understanding of the propagation behaviors and applications of a vortex Airy beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ament, C., Polynkin, P. & Moloney, J.V. (2011). Supercontinuum generation with femtosecond self-healing Airy pulses. Phys. Rev. Lett. 107, 243901.CrossRefGoogle ScholarPubMed
Bandres, M.A. & Gutierrez-Vega, J.C. (2007). Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Express 15, 1671916728.CrossRefGoogle ScholarPubMed
Baumgartl, J., Mazilu, M. & Dholakia, K. (2008). Optically mediated particle clearing using Airy wave packets. Nat. Photo. 2, 675678.CrossRefGoogle Scholar
Berry, M.V. & Balazs, N.L. (1979). Nonspreading wave packets. Am. J. Phys. 47, 264.CrossRefGoogle Scholar
Broky, J., Siviloglou, G.A., Dogariu, A. & Christodoulides, D.N. (2008). Self-healing properties of optical Airy beams. Opt. Express 16, 1288012891.CrossRefGoogle ScholarPubMed
Chen, R.P. & Ooi, C.H.R. (2011). Nonclassicality of vortex Airy beams in the Wigner representation. Phys. Rev. A 84, 043846.CrossRefGoogle Scholar
Chen, R.P., Yin, C.F., Chu, X.X. & Wang, H. (2010). Effect of Kerr nonlinearity on an Airy beam. Phys. Rev. A 82, 043832.CrossRefGoogle Scholar
Chen, R.P., Zheng, H.P. & Dai, C.Q. (2011). Wigner distribution function of an Airy beam. J. Opt. Soc. Am. A 28, 13071311.CrossRefGoogle ScholarPubMed
Dai, H.T., Liu, Y.J., Luo, D. & Sun, X.W. (2010). Propagation dynamics of an optical vortex imposed on an Airy beam. Opt. Lett. 35, 40754077.CrossRefGoogle Scholar
Dai, H.T., Liu, Y.J., Luo, D. & Sun, X.W. (2011). Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation. Opt. Lett. 36, 16171619.CrossRefGoogle ScholarPubMed
Desai, T. & Pant, H.C. (2000). Control of Rayleigh-Taylor instabilities in laser accelerated seeded targets. Laser Part. Beams 18, 119128.CrossRefGoogle Scholar
Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. (2009). Nonlinear generation and manipulation of Airy beams. Nat. Photo. 3, 395398.CrossRefGoogle Scholar
Guo, H., Chen, J. & Zhuang, S. (2006). Vector plane wave spectrum of an arbitrary polarized electromagnetic wave. Opt. Express 14, 20952100.CrossRefGoogle ScholarPubMed
Kaganovsky, Y. & Heyman, E. (2010). Wave analysis of Airy beams. Opt. Express 18, 84408452.CrossRefGoogle ScholarPubMed
Kaminer, I., Segev, M. & Christodoulides, D.N. (2011). Self-accelerating self-trapped optical beams. Phys. Rev. Lett. 106, 213903.CrossRefGoogle ScholarPubMed
Kasparian, J. & Wolf, J. P. (2009). Laser beams take a curve. Sci. 324, 194.Google ScholarPubMed
Li, L., Li, T., Wang, S.M., Zhang, C. & Zhu, S.N. (2011). Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett. 107, 126804.CrossRefGoogle ScholarPubMed
Luo, Y. & , B. (2010). Far-field properties in two off-axis superimposed Laguerre-Gaussian beams beyond the paraxial approximation. J. Opt. Soc. Am. A 27, 238244.CrossRefGoogle ScholarPubMed
Mandel, L. & Wolf, E. (1995). Optical Coherence and Quantum Optics. New York: Cambridge University Press.CrossRefGoogle Scholar
Mart'ınez-Herrero, R., Mejas, P.M., Bosch, S. & Carnicer, A. (2001). Vectorial structure of nonparaxial electromagnetic beams. J. Opt. Soc. Am. A 18, 11678–1680.Google Scholar
Mazilu, M., Baumgartl, J., Cizmar, T. & Dholakia, K. (2009). Accelerating vortices in Airy beams. Proc. SPIE. 7430, 74300C–1.CrossRefGoogle Scholar
Mellado, V.H., Hacyan, S. & Jauregui, R. (2006). Trapping and acceleration of charged particles in Bessel beams. Laser Part. Beams 24, 559566.CrossRefGoogle Scholar
Minovich, A., Klein, A.E., Janunts, N., Pertsch, T., Neshev, D.N. & Kivshar, Y.S. (2011). Generation and near-field imaging of Airy surface plasmons. Phys. Rev. Lett. 107, 116802.CrossRefGoogle ScholarPubMed
Novitsky, A.V. & Novitsky, D.V. (2009). Nonparaxial Airy beams: role of evanescent waves. Opt. Lett. 34, 34303432.CrossRefGoogle ScholarPubMed
Pismen, L.M. (1999). Vortices in Nonlinear Fields. Oxford: Clarendon Press.CrossRefGoogle Scholar
Polynkin, P., Kolesik, M. & Moloney, J. (2009a). Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 103, 123902.CrossRefGoogle ScholarPubMed
Polynkin, P., Kolesik, M., Moloney, J., Siviloglou, G.A. & Christodoulides, D.N. (2009b). Curved plasma channel generation using ultraintense Airy beams. Sci. 324, 229.Google ScholarPubMed
Siviloglou, G.A. & Christodoulides, D.N. (2007). Accelerating finite energy Airy beams. Opt. Lett. 32, 979981.CrossRefGoogle ScholarPubMed
Siviloglou, G.A., Brokly, J., Dogariu, A. & Christodoulides, D.N. (2007). Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901.CrossRefGoogle ScholarPubMed
Stamnes, J.J. (1983). Uniform asymptotic theory of diffraction by apertures. J. Opt. Soc. Am. 73, 96109.CrossRefGoogle Scholar
Sztul, H.I. & Alfano, R.R. (2008). The Poynting vector and angular momentum of Airy beams. Opt. Express 16, 94119416.CrossRefGoogle ScholarPubMed
Wu, G., Lou, Q. & Zhou, J. (2008). Analytical vectorial structure of hollow Gaussian beams in the far field. Opt. Express 16, 64176424.CrossRefGoogle ScholarPubMed
Zhou, G. (2006). Analytical vectorial structure of Laguerre-Gaussian beam in the far field. Opt. Lett. 31, 26162618.CrossRefGoogle ScholarPubMed
Zhou, G., Ni, Y. & Zhang, Z. (2007). Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field. Opt. Commun. 272, 3239.CrossRefGoogle Scholar