Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T06:34:14.344Z Has data issue: false hasContentIssue false

Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target

Published online by Cambridge University Press:  01 August 2012

Huan Wang
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, China Key Laboratory of High Energy Density Physics Simulation of the Ministry of Education, Peking University, Beijing, China
Lihua Cao*
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, China Key Laboratory of High Energy Density Physics Simulation of the Ministry of Education, Peking University, Beijing, China Institute of Applied Physics and Computational Mathematics, Beijing, China
Zongqing Zhao
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
Yuqiu Gu
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
X.T. He
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing, China Key Laboratory of High Energy Density Physics Simulation of the Ministry of Education, Peking University, Beijing, China Institute of Applied Physics and Computational Mathematics, Beijing, China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China
*
Address correspondence and reprint requests to: Lihua Cao, Institute of Applied Physics and Computational Mathematics, Beijing, China, 100088. E-mail: cao_lihua@iapcm.ac.cn

Abstract

An advanced cone-nanolayer target with nanolayers on both inside and outside of the hollow-cone tip is proposed. Two-dimensional particle-in-cell simulations show that laser interaction with such cone-nanolayer targets can efficiently produce fast electron beams with manageable spotsize, and the beams can propagate for a relatively long distance in the vacuum beyond the cone tip.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Cao, L., Gu, Y., Zhao, Z., Cao, L., Huang, W., Zhou, W., He, X.T., Yu, W. & Yu, M.Y. (2010a). Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Phys. Plasmas 17, 043103.CrossRefGoogle Scholar
Cao, L., Gu, Y., Zhao, Z., Cao, L., Huang, W., Zhou, W., Cai, H., He, X.T., Yu, W. & Yu, M.Y. (2010b). Control of the hot electrons produced by laser interaction with nanolayered target. Phys. Plasmas 17, 103106.CrossRefGoogle Scholar
Cao, L., Chen, M., Zhao, Z., Cai, H., Wu, S., Gu, Y., Yu, W., Yu, M.Y., & He, X.T. (2011). Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target. Phys. Plasmas 18, 054501.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.CrossRefGoogle ScholarPubMed
Courtois, C., Edwards, R., Compant La Fontaine, A., Aedy, C., Barbotin, M., Bazzoli, S., Biddle, L., Brebion, D., Bourgade, J.L., Drew, D., Fox, M., Gardner, M., Gazave, J., Lagrange, J.M., Landoas, O., Ledain, L., Lefebvre, E., Mastrosimone, D., Pichoff, N., Pien, G., Ramsay, M., Simons, A., Sircombe, N., Stoeckl, C. & Thorp, K. (2011). High-resolution multi-MeV X-ray radiography using relativistic laser-solid interaction. Phys. Plasmas 18, 023101.CrossRefGoogle Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 12, 02630346.Google Scholar
Kahaly, S., Yadav, S.K., Wang, W.M., Sengupta, S., Sheng, Z.M., Das, A., Kaw, P.K. & Kumar, G.R. (2008). Near-complete absorption of intense ultrashort laser light by sub-λ gratings. Phys. Rev. Lett. 101, 145001.CrossRefGoogle ScholarPubMed
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature (London) 412, 798.CrossRefGoogle ScholarPubMed
Kodama, R., Sentoku, Y., Chen, Z.L., Kumar, G.R., Hatchett, S.P., Toyama, Y., Cowan, T.E., Freeman, R.R., Fuchs, J., Izawa, Y., Key, M.H., Kitagawa, Y., Kondo, K., Matsuoka, T., Nakamura, H., Nakatsutsumi, M., Norreys, P.A., Norimatsu, T., Snavely, R.A., Stephens, R.B., Tampo, M., Tanaka, K.A. & Yabuuchi, T. (2004). Plasma devices to guide and collimate a high density of MeV electrons. Nature (London) 432, 1005.CrossRefGoogle ScholarPubMed
Kulcsár, G., Al Mawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L., & Marjoribanks, R.S. (2000). Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.CrossRefGoogle ScholarPubMed
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Murnane, M.M., Kapteyn, H.C., Gordon, S.P., Bokor, J., Glytsis, E.N. & Falcone, R.W. (1993). Efficient coupling of high intensity subpicosecond laser pulses into solids. Appl. Phys. Lett. 62, 1068.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Hohzaki, T., Johzaki, T., Nagatomo, H., Mima, K. & Koga, J. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.CrossRefGoogle Scholar
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N. & Serikama, T. (1997). X-ray generation enhancement from a laser-produced plasma with a porous silicon target. Appl. Phys. Lett. 70, 1653.CrossRefGoogle Scholar
Ovchinnikov, A.V., Kostenko, O.F., Chefonov, O.V., Rosmej, O.N., Andreev, N.E., Agranat, M.B., Duan, J.L., Liu, J. & Fortov, V.E. (2011). Characteristic X-rays generation under the action of femtosecond laser pulses on nano-structured targets. Laser Part. Beams 29, 249254.CrossRefGoogle Scholar
Quinn, M.N., Yuan, X.H., Lin, X.X., Carroll, D.C., Tresca, O., Gray, R.J., Coury, M., Li, C., Li, Y.T., Brenner, C.M., Robinson, A.P.L., Neely, D., Zielbauer, B., Aurand, B., Fils, J., Kuehl, T. & McKenna, P. (2011). Refluxing of fast electrons in solid targets irradiated by intense, picoseconds laser pulses. Plasma Phys. Contr. Fusion 53, 025007.CrossRefGoogle Scholar
Renard-Le Galloudec, N., D'Humieres, E., Cho, B.I., Osterholz, J., Sentoku, Y. & Ditmire, T. (2009). Guiding, focusing, and collimated transport of hot electrons in a canal in the extended tip of cone targets. Phys. Rev. Lett. 102, 205003.CrossRefGoogle Scholar
Rousse, A., Rischel, C. & Gauthier, J.-C. (2001). Colloquium: Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 17.CrossRefGoogle Scholar
Ruhl, H., Bonitz, M. & Semkat, D. (2006). Introduction to Computational Methods in Many Particle Body Physics. Paramus: Rinton Press.Google Scholar
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 3083.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Theobald, W., Akli, K., Clarke, R., Delettrez, J.A., Freeman, R.R., Glenzer, S., Green, J., Gregori, G., Heathcote, R., Izumi, N., King, J.A., Koch, J.A., Kuba, J., Lancaster, K., Mackinnon, A.J., Key, M., Mileham, C., Myatt, J., Neely, D., Norreys, P.A., Park, H.-S., Pasley, J., Patel, P., Regan, S.P., Sawada, H., Shepherd, R., Snavely, R., Stephens, R.B., Stoeckl, C., Storm, M., Zhang, B. & Sangster, T.C. (2006). Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets. Phys. Plasmas 13, 043102.CrossRefGoogle Scholar
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445.CrossRefGoogle Scholar
Zhao, Z., Cao, L., Cao, L., Wang, J., Huang, W., Jiang, W., He, Y., Wu, Y., Zhu, B., Dong, K., Ding, Y., Zhang, B., Gu, Y., Yu, M. Y. & He, X.T. (2010a). Acceleration and guiding of fast electrons by a nanobrush target. Phys. Plasmas 17, 123108.CrossRefGoogle Scholar
Zhou, C.T., Wu, S.Z., Cai, H.B., Chen, M., Cao, L.H., Chew, L.Y. & He, X.T. (2010b). Hot electron transport and heating in dense plasma core by hollow guiding. Laser Part. Beams 28, 563570.CrossRefGoogle Scholar