Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T02:01:19.724Z Has data issue: false hasContentIssue false

Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplasma

Published online by Cambridge University Press:  17 June 2010

S.D. Patil*
Affiliation:
Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur, India
M.V. Takale
Affiliation:
Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur, India
S.T. Navare
Affiliation:
Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur, India
M.B. Dongare
Affiliation:
Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur, India
*
Address correspondence and reprint requests to: S.D. Patil, Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, India. E-mail: sdpatil_phy@rediffmail.com

Abstract

This paper presents an investigation of the focusing of Hermite-cosh-Gaussian laser beams in magneto-plasma by considering ponderomotive nonlinearity. The dynamics of the combined effects of nonlinearity and spatial diffraction is presented. To highlight the nature of focusing, plot of beam-width parameter vs. dimensionless distance of propagation has been obtained. The effect of mode index and decentered parameter on the self-focusing of the beams has been discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Derchies, F., Jaquet, F., Malka, V., Marques, J.R., Matthieussent, G., Mine, P., Modena, A., Mora, P., Manillo, J. & Nazmudin, Z. (1998). Observation of laser Wakefield acceleration of electrons. Phys. Rev. Lett. 81, 995998.CrossRefGoogle Scholar
Anderson, D., Bonnedal, M. & Lisak, M. (1980). Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115127.CrossRefGoogle Scholar
Andreev, N.E., Gorbunov, L.M. & Frolov, A.A. (1998). On the laser wakefield acceleration in plasma channels. Fiz. Plasmy 24, 888.Google Scholar
Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Nakajima, K. & Ogata, A. (1997). Structure of the wakefield in plasma channels. Phys. Plasma 4, 11451153.CrossRefGoogle Scholar
Bai, J., Pan, L., Ma, R., Zhao, Z. & Lu, B. (2010). Spectral anomalies of pulsed Hermite-cosh-Gaussian beams focused by an aperture lens. Optik 121, 132137.CrossRefGoogle Scholar
Bai, J., Zhao, Z., Pan, L., Zhang, Y. & Chang, S. (2009). Spectral anomalies of diffracted pulsed Hermite-cosh-Gaussian beams in dispersive media. Opt. Laser Techno. 41, 827831.CrossRefGoogle Scholar
Belafhal, A. & Ibnchaikh, M. (2000). Propagation properties of Hermite-cosh-Gaussian laser beams. Opt. Commun. 186, 269276.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Cornolti, F., Lucchesi, M. & Zambon, B. (1990). Elliptic Gaussian beam self-focusing in nonlinear media. Opt. Commun. 75, 129135.CrossRefGoogle Scholar
Deutsch, C., Furukaw, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of fast ignitor concept. Phys. Rev. Lett. 77, 2883–2486.CrossRefGoogle ScholarPubMed
Du, X. & Zhao, D. (2006). Off-axial elliptical Hermite-cosh-Gaussian beams. Opt. Commun. 268, 282288.CrossRefGoogle Scholar
Du, X. & Zhao, D. (2007). Factorial Fourier transformations of elliptical Hermite-cosh-Gaussian beams. Phys. Lett. A 366, 271275.CrossRefGoogle Scholar
Eder, D.C., Amendt, P., Dasilva, L.B., London, R.A., Macgowan, B.J., Matthaws, D.L., Penetrante, B.M., Rosen, M.D., Wilks, S.C., Donnelly, T.D., Falcone, R.W. & Strobel, G.L. (1994). Tabletop X-ray lasers. Phys. Plasmas 1, 17441752.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 18791914.CrossRefGoogle Scholar
Fibich, G. (2006). Collapse dynamics of super-Gaussian beams. Opt. Expr. 14, 54685475.Google Scholar
Gill, T.S., Saini, N.S. & Kaul, S.S. (2000). Dynamics of self-focusing and self-phase modulation of elliptic Gaussian laser beam in a kerr-medium. Pramana J. Phys. 55, 423431.Google Scholar
Gill, T.S., Saini, N.S., Kaul, S.S. & Singh, A. (2004). Propagation of elliptic Gaussian laser beam in a higher order nonlinear medium. Optik 115, 493498.CrossRefGoogle Scholar
Grow, T.D., Ishaaya, A.A., Vuong, L.T., Gaeta, A.L., Gavish, N. & Hora, H. (1969). Self-focusing of laser beams in a plasma by Ponderomotive forces. Z. Phys. 226, 156159.Google Scholar
Gu, J., Zhao, D., Mao, H. & Mei, Z. (2005). Propagation characteristics of the two-dimensional off-axial Hermite-cosh-Gaussian beams through rectangular aperture and misaligned optical systems. Opt. Laser Techno. 37, 173179.CrossRefGoogle Scholar
Gu, J., Zhao, D., Mei, Z. & Mao, H. (2004). Propagation of the relative phase shift of two-dimensional Hermite-cosh-Gaussian beams through rectangular apertureed optical systems. Opt. Laser Techno. 115, 337342.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part Beams 23, 441451.CrossRefGoogle Scholar
Ibnchaikh, M., Dalil-Essakali, L., Hricha, Z. & Belafhal, A. (2001). Parametric characterization of truncated Hermite-cosh-Gaussian beams. Opt. Commun. 190, 2936.CrossRefGoogle Scholar
Ji, X. & Lu, B. (2002). The effect of spherically aberrated lens on the kurtosis parameter of Hermite-cosh-Gaussian beams. Optik 113, 145148.CrossRefGoogle Scholar
Johannisson, P., Anderson, D., Lisak, M. & Marklund, M. (2003). Nonlinear Bessel beams. Opt. Commun. 222, 107115.CrossRefGoogle Scholar
Jones, R.D., Mead, W.C., Coggeshall, S.V., Aldrich, C.H., Norton, J.L., Pollak, G.D. & Wallace, J.M. (1988). Self-focusing and filamentation of laser light in high Z plasmas. Phys. Fluids 31, 12491272.CrossRefGoogle Scholar
Karlsson, M. (1992). Optical beams in saturable self focusing media. Phys. Rev. A 46, 27262734.CrossRefGoogle ScholarPubMed
Lu, B. & Qing, Y. (2001). Self-convergent beam width approach to truncated Hermite-cosh-Gaussian beams and a comparison with the asymptotic analysis. Opt. Commun. 199, 2531.CrossRefGoogle Scholar
Luo, S. & Lu, B. (2002). Propagation of the kurtosis parameter of Hermite-cosh-Gaussian beams. Optik 113, 329332.CrossRefGoogle Scholar
Mei, Z., Zhao, D., Gu, J. & Mao, H. (2005). Focal shift in focused off-axial Hermite-cosh-Gaussian beams. Opt. Laser Techno. 37, 299303.CrossRefGoogle Scholar
Mei, Z., Zhao, D., Sun, D. & Gu, J. (2004). The M2 factor and kurtosis parameter of the off-axial Hermite-cosh-Gaussian beams. Optik 115, 8993.CrossRefGoogle Scholar
Milchberg, H.M., Durfee, Iii, C.G. & Mcllrath, T.J. (1995). Highorder frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle ScholarPubMed
Misra, S. & Mishra, S.K. (2009 a). Focusing of dark hollow Gaussian electromagnetic beam in plasma with relativistic-ponderomotive regime. Prog. Electrom. Res. B. 16, 291309.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009 b). Ring formation in electromagnetic beams in a magnetoplasma. J. Plasma Phys. 75, 769785.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009 c). Focusing of a ring ripple on a Gaussian electromagnetic beams in a magnetoplasma. J. Plasma Phys. 75, 545561.CrossRefGoogle Scholar
Mora, P. & Antonsen, T.M. (1996). Electron cavitation and acceleration in the wake of an ultraintense self-focused laser pulse. Phys. Rev. E 53, R2068R2071.CrossRefGoogle ScholarPubMed
Nayyar, V.P. (1986). Nonlinear propagation of degenerate modes of a laser cavity. J. Opt. Soc. Am. B 3, 711714.Google Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V. & Dongare, M.B. (2008 a). Propagation of Hermite-cosh-Gaussian laser beams in n-InSb. Opt. Commun. 281, 47764779.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Fulari, V.J. & Dongare, M.B. (2008 b). Propagation of Hermite-cosh-Gaussian laser beams in non-degenerate germanium having space charge neutrality. J. Mod. Opt. 55, 35293535.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T. & Dongare, M.B. (2009). Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption. Opt. Lasers Eng. 47, 604606.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2007). Analytical study of HChG- laser beams in collisional and collisionless plasma. J. Opt. 36, 136144.CrossRefGoogle Scholar
Qui, Y., Guo, H., Chen, X. & Kong, H.J. (2004). Propagation properties of an elegant Hermite-cosh-Gaussian beam through a finite aperture. J. Opt. A: Pure Appl. Opt. 6, 210215.Google Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sari, A.H., Osman, F., Doolan, K.R., Ghoranneviss, M., Hora, H., Hopfl, R., Benstetter, G. & Hantehzadehi, M.H. (2005). Application of laser driven fast high density plasma blocks for ion implantation. Laser Part. Beams 23, 467473.CrossRefGoogle Scholar
Sharma, A., Prakash, G., Verma, M.P. & Sodha, M.S. (2003). Three regimes of intense laser propagation in plasmas. Phys. Plasmas 10, 40794084.CrossRefGoogle Scholar
Sharma, A., Verma, M.P. & Sodha, M.S. (2004). Self focusing of electromagnetic beams in collisional plasmas with nonlinear absorption. Phys. Plasmas 11, 42754279.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectrics, Plasmas and Semiconductors. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 a). Focusing of dark hollow Gaussian electromagnetic beams in a magnetoplasma. J. Plasma Phys. 75, 731748.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 b). Focusing of dark hollow Gaussian electromagnetic beams in plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 c). Growth of a ring ripples on a Gaussian electromagnetic beam in a plasma with relativistic-ponderomotive nonlinearity. Laser Part. Beams 27, 689698.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle ScholarPubMed
Sprangle, P. & Esarey, E., Ting, A. & Joyee, G. (1998). Laser wake field acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Takale, M.V., Navare, S.T., Patil, S.D., Fulari, V.J. & Dongare, M.B. (2009). Self-focusing and defocusing of TEM0p Hermite-Gaussian laser beams in collisionless plasma. Opt. Commun. 282, 31573162.CrossRefGoogle Scholar
Tang, Q.J., Chen, D.M., Yu, Y.A. & Hu, Q.Q. (2006). Propagation properties of off-axis Hermite-cosh-Gaussian beam combinations through a first-order optical system. Chinese Phys. 15, 26092617.Google Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472475.CrossRefGoogle ScholarPubMed
Wang, X. & Lu, B. (2001). The M2 factor of Hermite-cosh-Gaussian beams. J. Mod. Opt. 48, 20972103.CrossRefGoogle Scholar
Yang, A., Zhang, E., Ji, X. & Lu, B. (2009). Propagation properties of Hermite cosh-Gaussian beams through atmospheric turbulence. Opt. Laser Techno. 41, 714722.CrossRefGoogle Scholar
Yu, S., Guo, H., Fu, X. & Hu, W. (2002). Propagation properties of elegant Hermite-cosh-Gaussian laser beams. Opt. Commun. 204, 5966.CrossRefGoogle Scholar
Zeng, Y., Peng, R. & Fan, D. (2006). Focal switch in unapertured converging Hermite-cosh-Gaussian beams. Opt. Laser Techno. 38, 620625.CrossRefGoogle Scholar
Zeng, Y., Peng, R. & Zhu, X. (2005). Focal shifts in focused Hermite-cosh-Gaussian laser beams. Optik 116, 995998.CrossRefGoogle Scholar
Zhao, D., Mao, H., Liu, H., Wang, S., Jing, F. & Wei, X. (2004). Propagation of Hermite-cosh-Gaussian beams in aperture factorial Fourier transforming systems. Opt. Commun. 236, 225235.CrossRefGoogle Scholar
Zhao, D., Mao, H., Zheng, C., Wang, S., Jing, F., Wei, X., Zhu, Q. & Liu, H. (2005). The propagation properties and kurtosis parametric characteristics of Hermit-cosh-Gaussian beams passing through factorial Fourier transformation systems. Optik 116, 461468.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H.C. & Christov, I.P. (1996). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 76, 752755.CrossRefGoogle Scholar