Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T14:36:57.036Z Has data issue: false hasContentIssue false

Formation of double layers and evolution of the distribution functions during ion acceleration driven by a high-intensity short laser pulse normally incident on thin foils

Published online by Cambridge University Press:  02 November 2016

M. Shoucri*
Affiliation:
Institut de Recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada
F. Vidal
Affiliation:
Institut national de la recherche scientifique (INRS) Centre Énergie, Matériaux et Télécommunications, Varennes, Québec J3X1S2, Canada
J-P. Matte
Affiliation:
Institut national de la recherche scientifique (INRS) Centre Énergie, Matériaux et Télécommunications, Varennes, Québec J3X1S2, Canada
*
Address correspondence and reprint requests to: M. Shoucri, Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada. E-mail: magshoucri@gmail.com

Abstract

We use an Eulerian Vlasov code, which solves the one-dimensional relativistic Vlasov–Maxwell equations for both electrons and ions, to follow in details the evolution of the distribution functions and the mechanism of the formation and evolution of double layers during ion acceleration driven by a high-intensity circularly polarized short laser pulse (12 ω−1 where ω is the laser angular frequency) normally incident on a thin dense foil. We compare three cases with a high-density deuterium plasma target of total thickness 1.767 cω−1 and constant n/n cr = 100, where n cr is the critical density, and where the laser intensity is varied from a situation where the target is opaque to the laser pulse (normalized vector potential or quiver momentum a 0 = 80), to a situation where, above a critical laser intensity, a very small fraction of the laser pulse is transmitted through the target (a 0 = 90), and finally to a situation where a more important fraction is transmitted through the target (a 0 = 100). The dynamics of ion and electron acceleration are quite different in the three cases, and are followed in detail by the Eulerian Vlasov code, which allows an accurate representation of the distribution function. In the intermediate case, the Vlasov code has revealed a remarkably well-developed spiral structure in the phase space of the electron distribution function, which is associated with large sawtooth modulations in the electron density profiles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashinov, A. & Kim, A. (2013). On the electrodynamic model of ultra-relativistic laser–plasma interactions caused by radiation reaction effects. Phys. Plasmas 20, 113111.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cechetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Liseykina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interaction. Laser Part. Beams 25, 161167.Google Scholar
d'Humières, E., Brantov, A., Bychenkov, V.Yu. & Tikhonchuk, V.T. (2013). Optimization of laser-target interaction for proton acceleration. Phys. Plasmas 20, 023103/1-8.CrossRefGoogle Scholar
d'Humières, E., Lefebvre, E., Gremillet, L. & Malka, V. (2005). Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704/1-13.Google Scholar
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shukla, P.K. (2009). Linear acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006/1-19.Google Scholar
Eliezer, S., Nissim, N., Martinez-Val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.Google Scholar
Gibbon, P. & Bell, A.R. (1992). Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68, 1535.Google Scholar
Macchi, A., Veghini, S., Liseykina, T.V. & Pegoraro, F. (2010). Radiation pressure acceleration of ultrathin foils. New J. Phys. 12, 045013/1-18.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaume, C., Sokolov, I.V. & Mourou, G. (2009). Ponderomotive ion acceleration in dense plasmas at super-high laser intensities. Eur. Phys. J. D 55, 393398.Google Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103/1-16.Google Scholar
Scisciò, M., d'Humières, E., Fourmaux, S., Kieffer, J. C., Palumbo, L. & Antici, P. (2014). Bidimensional particle-in-cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser. Phys. Plasmas 21, 123104/1-6.Google Scholar
Shoucri, M. (2008 a). Numerical simulation of wake-field acceleration using an Eulerian Vlasov code. Commun. Comput. Phys. 4, 703718.Google Scholar
Shoucri, M. (2008 b). Numerical Solution of Hyperbolic Differential Equations. New-York: Nova Science.Google Scholar
Shoucri, M. (2010). Numerical solution of the relativistic Vlasov–Maxwell equations for the study of the interaction of a high intensity laser beam normally incident on an overdense plasma. In Eulerian Code for the Numerical Solution of the Kinetic Equations Plasmas (Shoucri, M., Ed.), pp. 163236. New York: Nova Science Publishers.Google Scholar
Shoucri, M. (2012). Ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma: A Vlasov code simulation. Comput. Sci. Disc. 5, 014005/1-19.Google Scholar
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28, 129147.Google Scholar
Shoucri, M., Lavocat-Dubuis, X., Matte, J.-P. & Vidal, F. (2011). Numerical study of ion acceleration and plasma jet formation in the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 29, 315332.Google Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2013). Ion acceleration and plasma jets driven by a high intensity laser beam normally incident on thin foils. Laser Part. Beams 31, 613625.Google Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2014). Vlasov simulation of ion acceleration by intense laser beam normally incident on a thin target. Eur. Phys. J. D 68, 257/1-6.Google Scholar
Shoucri, M., Matte, J.P. & Vidal, F. (2016). A numerical study of ponderomotive ion acceleration in a dense plasma driven by a circularly polarized high intensity laser beam normally incident on thin foils. Laser Part. Beams 34, 242262.Google Scholar
Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B. & Sagdeev, R.Z. (2009). Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Control. Fusion 51, 024014/1-9.Google Scholar