Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:34:20.632Z Has data issue: false hasContentIssue false

General foundation for the nonlinear ponderomotive four-force in laser-plasma interactions

Published online by Cambridge University Press:  28 November 2006

T.P. ROWLANDS
Affiliation:
University of Queensland Business School, University of Queensland, Ipswich, Australia

Abstract

The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitchison, I.J.R. (1984). An Informal Introduction to Gauge Field Theories. Cambridge, UK: Cambridge University Press.
Anile, A.M. (1990). Relativistic Fluids and Magneto-Fluids. Cambridge, UK: Cambridge University Press.CrossRef
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Bauer, D., Mulser, P. & Steeb, W.H. (1995). Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys. Rev. Lett. 75, 46224625.CrossRefGoogle Scholar
Beech, R. & Osman, F. (2005). Radiation reduction of optical solitons resulting from higher order dispersion terms in the nonlinear Schrodinger equation. Laser Part. Beams 23, 483502.Google Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2006). Between two stream and filamentation instabilities: Temperature and collisions effects. Laser Part. Beams 24, 2733.CrossRefGoogle Scholar
Buneman, O. (1968). Fast numerical procedures for computer experiments on relativistic plasmas. In The Coral Gables Conference on Relativistic Plasmas (Buneman, O. & Pardo, W., Eds.). New York: Benjamin
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams 23, 411416.Google Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.Google Scholar
Davies, J.R. (2006). The Alfven limit revisited and its relevance to laser plasma interactions. Laser Part. Beams 24, 299310.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.Google Scholar
Friedrichs, K.O. (1974). The laws of relativistic electro-magnetic-fluid dynamics. Comm. Pure. Appl. Math. 27, 749808Google Scholar
Ginzburg, V. (1970). The Propagation of Electromagnetic Waves in Plasmas. Oxford, UK: Pergamon Press.
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1525.Google Scholar
Grad, H. (1971). Magnetic properties of contained plasma. Annals NY Acad. Sci. 172, 635650.CrossRefGoogle Scholar
Grad, H. (1968). Yes Virginia plasma is diamagnetic if you believe in Santa Claus. Bull. Am. Phys. Soc. 13, 319.Google Scholar
Grad, H. (1967). Some new stable toroidal plasma configurations. Phys. Rev. Lett. 18, 585590.CrossRefGoogle Scholar
Gus'kov, S.Y. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.Google Scholar
Hartemann, F. & Toffano, Z. (1990). Relativistic electrodynamics of continuous media. Phys. Rev. A 41, 50665073.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma. Phys. Fluids 12, 182191.CrossRefGoogle Scholar
Hora, H. (1981). The Physics of Laser Driven Plasmas. New York: John Wiley & Sons.
Hora, H. (1985). The transient electrodynamic forces at laser–plasma interaction. Phys. Fluids 28, 37053706.CrossRefGoogle Scholar
Hora, H. (2000). Laser Plasma Physics: Forces and the nonlinearity principle. Bellingham: SPIE Press.
Hora, H., Eliezer, S., Pease, R.S., Scharmann, A. & Schwabe, D. (1990). Laser Interaction and Related Plasma Phenomena (Hora, H. & Miley, G.H., Eds.), vol. 9. New York: Plenum.
Hora, H., Badziak, J., Glowacz, S., Jablonski, S., Skladanowski, Z., Osman, F., Cang, Yu., Zhang, J., Miley, G.H., Peng, H., He, X., Zhang, W., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Jablonski, S., Hora, H., Glowacz, S., Badziak, J., Cang, Y. & Osman, F. (2005). Two-fluid computations of plasma block dynamics for numerical analyze of rippling effect. Laser Part. Beams 23, 433440.Google Scholar
Kadomtsev, B.B. (1996). Nonlinear phenomena in Tokomak plasmas. Rep. Prog. Phys. 59, 91130.CrossRefGoogle Scholar
Kentwell, G.W. & Jones, D.A. (1987). The time dependent ponderomotive force. Phys. Rep. 45, 285359.CrossRefGoogle Scholar
Key, M.H. (2001). Fast track for fusion energy. Nature 412, 775776.CrossRefGoogle Scholar
Kodama & Fast Ignitor Consortium. (2002). Fast heating scalable for laser fusion ignition. Nature 418, 988943.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact Gev laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Marion, J.B. & Heald, M.A. (1980). Classical Electromagnetic Radiation. New York: Academic Press.
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.Google Scholar
Novak, M.M. (1980). Interaction of photons in dielectric media. Fortschritte d. Physik 28, 285353.CrossRefGoogle Scholar
Novak, M.M. (1981). Interaction of photons with electrons in dielectric media. PhD Thesis. New South Wales: University of New South Wales.
Novak, M.M. (1989). The effect of a nonlinear medium on electromagnetic waves. Fortschritte d. Physik 37, 125.CrossRefGoogle Scholar
Osman, F., Beech, P. & Hora, H. (2004). Solutions of the nonlinear paraxial equation due to laser plasma-interactions. Laser Part. Beams 22, 6974.Google Scholar
Pfirsch, D. & Morrison, P.J. (1991). The energy-momentum tensor for the linearized Maxwell–Vlasov and kinetic guiding center theories. Phys. Fluids B 3, 271283.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Rowlands, T.P. (1997). Relativistic Investigations of Laser-Plasma Interactions and Electrodynamics in a Medium. PhD Thesis. New South Wales: University of New South Wales.
Rowlands, T.P. (1990). The Gauge and Lorentz invariance of the non-linear ponderomotive 4-force. Plasmas Phys. Cont. Fusion 32, 297302.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Schlüter, A. (1960). Lecture Notes on Plasma Theory (Wittern, H., Ed.). Munich, Germany: Institut für Theroretische Physik, University of Munich.
Schlüter, A. (1950). Dynamic des plasmas I. Z. Naturforsch. 5A, 7278.Google Scholar
Schutz, B.F. (1985). A First Course in General Relativity. Cambridge, UK: Cambridge University Press.
Shercliff, J.A. (1965). A Textbook of Magneto-hydrodynamics. Oxford, UK: Pergamon Press.
Synge, J.L. (1965). Relativity: The Special Theory. Amsterdam: North-Holland Publishing.
Tabak, M., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Zeidler, A., Schnabl, H. & Mulser, P. (1985). Light pressure of time-dependent fields in plasmas. Phys. Fluids 28, 372376.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, T.P., Li, Z.H., Zhang, Y., Lang, W., Li, Z.J., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only 5-MJ energy. Phys. Rev. E 57, 37463748.Google Scholar
Zhu, S. & Shen, W. (1987). General relativistic ponderomotive force in a moving medium. J. Opt. Soc. Am. B 4, 730742.CrossRefGoogle Scholar