Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T20:30:02.079Z Has data issue: false hasContentIssue false

Generation of terahertz radiation by beating of two circular flat-topped laser beams in collisional plasma

Published online by Cambridge University Press:  15 October 2015

Farhad Bakhtiari*
Affiliation:
Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran
Masoud Yousefi
Affiliation:
Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran
Shole Golmohammady
Affiliation:
Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran
Seyed Masoud Jazayeri
Affiliation:
Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran
Bijan Ghafary
Affiliation:
Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran
*
Address correspondence and reprint requests to: F. Bakhtiari, Physics Department, Iran University of Science and Technology, Heydarkhani, Tehran, Iran. E-mail: fbakhtiari@physics.iust.ac.ir

Abstract

This paper presents a scheme of terahertz (THz) radiation generation based on beating of two flat-topped laser beams by different frequencies and the same electric field amplitudes in actual plasma with spatially periodic density that electron–neutral collisions have been taken into account. Flat-topped laser beams have the exclusive features such as steep gradient in distribution of laser intensities, wider cross-section in comparison with other profiles, which make stronger ponderomotive force and lead to stronger nonlinear current and hence, THz radiation of higher field. The effects of laser and plasma parameters on THz radiation generation are investigated analytically. It is shown that by increasing the order of flatness of incident laser beams, because of their steep gradient, good enhancement in emitted THz radiation take place. It can be deduced that by increasing beating frequency, efficiency of THz generation decreases which can be compensated by manipulating in density ripple magnitudes. The intensity of the emitted radiations is found to be highly sensitive to the order of flatness. Based on the results of this paper, optimization of laser and plasma parameters can increase the efficiency of THz radiation generation strongly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akyildiz, I.F., Jornet, J.M. & Han, Ch. (2014). Terahertz band: Next frontier for wireless communications. Phys. Commun. (Elsevier) 12, 1632.CrossRefGoogle Scholar
Al-Naib, I., Sharma, G., Dignam, M., Hafez, H., Ibrahim, A., Cooke, D.G., Ozaki, T. & Morandotti, R. (2013). Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial. Phys. Rev. B 88, 195203-1–195203-8.CrossRefGoogle Scholar
Andrew, F. (2014). Laser Beam Propagation: Generation and Propagation of Customized Light. Boca Raton: CRC Press, Taylor & Francis Group.Google Scholar
Bagini, V., Borgi, R., Gori, F., Pacileo, A.M. & Santarsiero, M.J. (1996). Propagation of axially symmetric flattened Gaussian beams. Opt. Soc. Am. A 13, 13851394.CrossRefGoogle Scholar
Bakhtiari, F., Golmohammady, Sh., Yousefi, M., Kashani, F.D. & Ghafary, B. (2015). Generation of terahertz radiation in collisional plasma by beating of two dark hollow laser beams. Laser Part. Beams 33, 463472.CrossRefGoogle Scholar
Beard, M.C., Turner, G.M. & Schmuttenmar, C.A. (2002). Measuring intra-molecular charge transfer via coherent generation of THz radiation. J. Phys. Chem. B 106, 71467159.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2009). Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasma 16, 103105.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2011). Terahertz generation from laser filaments in the presence of a static electric field in a plasma. Phys. Plasmas 18, 123106/1-4.CrossRefGoogle Scholar
Borghi, R. & Santarsiero, M. (1998). Modal decomposition of partially coherent flat-topped beams produced by multimode lasers. Opt. Lett. 23, 313315.CrossRefGoogle ScholarPubMed
Boyd, T.J.M. & Sanderson, J.J. (2003). The Physics of Plasmas. New York: Cambridge University Press.CrossRefGoogle Scholar
Budiarto, E., Margolies, J., Jeong, S., Son, J. & Bokor, J. (1996). High-intensity terahertz pulses at 1-kHz repetition rate. IEEE J. Quantum Electron. 32, 18391846.CrossRefGoogle Scholar
Cai, Y. & Lin, Q. (2003). Properties of a flattened Gaussian beam in the fractional Fourier transform plane. J. Opt. A: Pure Appl. Opt. 5, 272275.CrossRefGoogle Scholar
Chen, F.F. (1983). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.Google Scholar
Chen, J., Yu, Y. & Wang, F. (2011). Production of annular flat-topped vortex beams. Chin. Opt. Lett. 9, 011402/1–4.Google Scholar
Dickey, F.M., Holswade, S.C. & Shealy, D.L. (2006). Laser Beam Shaping Applications. New York: CRC Press.Google Scholar
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 2633.CrossRefGoogle ScholarPubMed
Forbes, A. (2013). Laser Beam Propagation. Pretoria, South Africa: CRC Press.Google Scholar
Golmohammady, S.H., Yousefi, M., Kashani, F.D. & Ghafary, B. (2013). Reliability analysis of the flat-topped array beam FSO communication link. J. Mod. Opt. 60, 696703.CrossRefGoogle Scholar
Gori, F. (1994). Flattened Gaussian beams. Opt. Commun. 107, 335341.CrossRefGoogle Scholar
Haotong, M., Zejin, L., Zhou, P., Wang, X., Yanxing, M. & Xiaojun, X. (2010). Generation of flat-top beam with phase-only liquid crystal spatial light modulators. J. Opt. 12, 045704.Google Scholar
Hashimshony, D., Zigler, A. & Papadopoulos, K. (2001). Conversion of electrostatic to electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86, 28062809.CrossRefGoogle ScholarPubMed
Hazra, S., Chini, T.K., Sanyal, M.K. & Grenzer, J. (2004). Ripple structure of crystalline layers in ion-beam-induced Si wafers. Phys. Rev. B 70, 121307(R).CrossRefGoogle Scholar
Holzman, J.F. & Elezzabi, A.Y. (2003). Two-photon photoconductive terahertz generation in ZnSe. Appl. Phys. Lett. 83, 29672969.CrossRefGoogle Scholar
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.CrossRefGoogle ScholarPubMed
Hussain, S., Singh, M., Singh, R.K. & Sharma, R.P. (2014). THz generation by self-focusing of hollow Gaussian laser beam in magnetized plasma. Europhys. Lett. 107, 65002-p1–65002-p6.CrossRefGoogle Scholar
Jiang, Y., Li, D., Ding, Y.J. & Zotova, I.B. (2011). Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion. Opt. Lett. 36, 16081610.CrossRefGoogle ScholarPubMed
Jha, P. & Verma, N.K. (2014). Numerical and simulation study of terahertz radiation generation by laser pulses propagating in the extraordinary mode in magnetized plasma. Phys. Plasmas 21, 063106/1–6.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.CrossRefGoogle Scholar
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photonics 2, 605.CrossRefGoogle Scholar
Kleine-Ostmann, T. & Nagatsuma, T. (2010). A review on terahertz communications research. J. Infrared Milli. Terahz. Waves 32, 143171.CrossRefGoogle Scholar
Kumar, S., Singh, R.K., Singh, M. & Sharma, R.P. (2015). THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma. Laser Part. Beams 33, 257263.CrossRefGoogle Scholar
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Layer, B.D., York, A., Antonson, T.M., Varma, S., Chen, Y.H., Leng, Y. & Milchberg, H.M. (2007). Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001-1–035001-4.CrossRefGoogle ScholarPubMed
Leemans, W.P., Vantilborg, J., Faure, J., Geddes, C.G.R., Toth, C., Schroeder, C.B., Esarey, E., Fubioni, G. & Dugan, G. (2004). Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11, 2899.CrossRefGoogle Scholar
Li, Y. (2002). Light beam with flat-topped profiles. Opt. Lett. 27, 10071009.CrossRefGoogle Scholar
Li, Y. (2002). New expressions for flat-topped light beams. Opt. Commun. 206, 225–34.CrossRefGoogle Scholar
Liu, Y., Houard, A., Prade, B., Akturk, S. & Mysyrowicz, A. (2007). Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. Phys. Rev. Lett. 99, 135002.CrossRefGoogle ScholarPubMed
Malik, A.K., Malik, H.K. & Kawata, S. (2010). Investigations on terahertz radiation generated by two superposed femtosecond laser pulses. J. Appl. Phys 107, 113105.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Nishida, Y. (2011 a). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. Phys. Lett. A 375, 1191.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2011 b). Strong terahertz radiation by beating of spatial-triangular lasers in a plasma. Appl. Phys. Lett. 99, 071107.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E 85, 016401-1–016401-9.CrossRefGoogle ScholarPubMed
Manouchehrizadeh, M. & Dorranian, D. (2013). Effect of obliqueness of external magnetic field on the characteristics of magnetized plasma wake field. J. Theor. Appl. Phys. 7, 4348.CrossRefGoogle Scholar
Magesh Kumar, K.K., Kumar, M., Yuan, T., Sheng, Z.M. & Chen, M. (2015). Terahertz radiation from plasma filament generated by two-color laser gas–plasma interaction. Laser Part. Beams 33, 473479.CrossRefGoogle Scholar
Nishi, N., Jitsuno, T., Tsubakimoto, K., Matsuoka, S., Miyanaga, N. & Nakatsuka, M. (2000). Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target. Opt. Rev. 7, 216220.CrossRefGoogle Scholar
Pathak, V.B., Dahiya, D. & Tripathi, V.K. (2009). Coherent terahertz radiation from interaction of electron beam with rippled density plasma. J. Appl. Phys. 105, 013315/1-5.CrossRefGoogle Scholar
Perrone, M. R., Piegari, A. & Scaglione, S. (1993). On the super- Gaussian unstable resonators for high-gain short pulse laser media. IEEE J. Quantum Elec. 29, 14231427.CrossRefGoogle Scholar
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301R310.CrossRefGoogle Scholar
Pukhov, A. (2003). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47.CrossRefGoogle Scholar
Rothwell, E.J. & Cloud, M.J. (2009). Electromagnetic. Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar
Sharma, R.P. & Singh, R.K. (2014). Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasma 21, 073101-1–073101-6.CrossRefGoogle Scholar
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116-1–241116-3.CrossRefGoogle Scholar
Shi, W., Ding, Y.J., Fernelius, N. & Vodopyanov, K. (2002). Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 27, 14541456.CrossRefGoogle ScholarPubMed
Singh, D. & Malik, H.K. (2014). Terahertz generation by mixing of two super-Gaussian laser beams in collisional Plasma. Phys. Plasmas 21, 083105-1–083105-5.Google Scholar
Singh, M. & Sharma, R.P. (2013). Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53, 540548.CrossRefGoogle Scholar
Singh, R.K. & Sharma, R.P. (2014). Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma. Phys. Plasma 21, 113109-1–113109-6.Google Scholar
Sprangle, P., Penano, J. R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.CrossRefGoogle ScholarPubMed
Tzortzakis, S., Mechhain, G., Patalano, G., Andre, Y.B., Prade, B., Franco, M., Mysyrowicz, A.M., Munier, J.M., Gheudin, M., Beaudin, G. & Encrenaz, P. (2002). Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett. 27, 19441946.CrossRefGoogle ScholarPubMed
Van, N.R., Park, C., Lachance, L.R. & Bklanger, P.A. (1994). Graded-Phase mirror resonator with a Super-Gaussian output in a CW-CO2 laser. IEEE J. Quantum Electron. 30, 26632669.Google Scholar
Varshney, P., Sajal, V., Baliyan, S., Sharma, N.K., Chauhan, P., Kumar, R. (2014 a). Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma. Laser Part. Beams 33, 5158.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Chauhan, P., Kumar, R. & Sharma, N.K. (2014 b). Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma. Laser Part. Beams 32, 375381.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337344.CrossRefGoogle Scholar
Wang, W., Wang, P.X., Ho, Y.K., Kong, Q., Chen, Z., Gu, Y., & Wang, S.J. (2006). Field description and electron acceleration of focused flattened Gaussian laser beams. Europhys. Lett. 73, 211217.CrossRefGoogle Scholar
Wang, W.M., Kawata, S., Sheng, Z.M., Li, T.Y. & Zhang, J. (2011). Towards gigawatt terahertz emission by few-cycle laser pulses. Phys. Plasmas 18, 073108-1–073108-6.CrossRefGoogle Scholar
Xiang, Y.D., Yu, X.R. & Rong, D.L. (2015). Shaping super-Gaussian beam through digital micro-mirror device. Sci. China – Phys. Mech. Astron. 58, 16.Google Scholar
Yampolsky, N.A. & Frainman, G.M. (2006). Conversion of laser radiation to terahertz frequency waves in plasma. Phys. Plasmas 13, 113108.CrossRefGoogle Scholar
Zhang, Y.X., Zhou, Y.C., Dong, L. & Liu, S.G. (2012). Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure. J. Appl. Phys. 101, 123503/1-4.Google Scholar
Zhao, C., Cai, Y., Lu, X., & Eyyuboglu, H.T. (2009). Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Opt. Express 17, 17531765.CrossRefGoogle ScholarPubMed
Zheng, H., Redo-Sanchez, A. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 91309141.CrossRefGoogle Scholar