Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T05:24:14.565Z Has data issue: false hasContentIssue false

How double layers accelerate charged particles

Published online by Cambridge University Press:  09 March 2009

S. Eliezer
Affiliation:
institute of Nuclear Fusion, Politechnical University of Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain SOREQ N.R.C., Yavne 70600, Israel
E. Kolka
Affiliation:
SOREQ N.R.C., Yavne 70600, Israel
H. Szichman
Affiliation:
SOREQ N.R.C., Yavne 70600, Israel
H. Hora
Affiliation:
CERN, CH, 1211 Geneva 23, Switzerland
F. Green
Affiliation:
CSIRO Division of Applied Physics, Lindfield-West NSW, Australia

Abstract

After the theory of dynamic double layers in laser-produced plasmas arrived at several significant results in agreement with measurement, including particle acceleration, a clarification was given to the paper by Bryant et al. (1992) negating such acceleration. The discrepancy seems to be in the definition of static double layers in contradiction with dynamic double layers that are created in laser-induced plasma. We present here new results on the acceleration of electrons in a laser-irradiated plasma by double layer mechanisms. A simple analytical example is given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. 1981 Cosmic Plasmas (Reidel, Dordrecht).CrossRefGoogle Scholar
Alfven, H. 1988 Laser Part. Beams 6, 437.CrossRefGoogle Scholar
Aydin, M. & Hora, H. 1992 Phys. Rev. A Acct. No. AJL466.Google Scholar
Bernstein, I.B. et al. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bharuthram, R. & Shukla, P.K. 1986 Phys. Fluids 29, 3214.CrossRefGoogle Scholar
Bryant, D.A. 1992 Phys. Rev. Lett. 68, 37.CrossRefGoogle Scholar
Chan, C. & Hershkovitz, N. 1982 Phys. Fluids 25, 2135.CrossRefGoogle Scholar
DeGroot, J.S. et al. 1977 Phys. Rev. Lett. 38, 1283.CrossRefGoogle Scholar
Ehler, A.W. 1975 J. Appl. Phys. 46, 2464.CrossRefGoogle Scholar
Eliezer, S. & Ludmirsky, A. 1983 Laser Part. Beams 1, 251.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. 1989 Phys. Reports 172, 339.CrossRefGoogle Scholar
Falthammer, C.-G. 1987 Ann. Geophys. 5A 171.Google Scholar
Goerz, C.K. 1979 Rev. Geophys. Space Phys. 17, 418.CrossRefGoogle Scholar
Hershkovitz, N. 1985 Space Sci. Rev. 41, 351.Google Scholar
Hora, H. 1969 Physics of Fluids 12, 181.Google Scholar
Hora, H. et al. 1984 Phys. Rev. Lett. 53, 1650.CrossRefGoogle Scholar
Hora, H. et al. 1989 IEEE Trans. Plasma Sci. PS-17, 284.CrossRefGoogle Scholar
Hora, H. 1991 Plasmas at High Temperature and Density (Springer, Heidelberg).Google Scholar
Knorr, G. & Goerz, C. 1974 Astrophys. Space Sc. 31, 209.CrossRefGoogle Scholar
Lalousis, P. & Hora, H. 1983 Laser Part. Beams I, 283.CrossRefGoogle Scholar
Lembege, B. & Dawson, J.M. 1989 Phys. Rev. Lett. 62, 2683.CrossRefGoogle Scholar
Linlor, W.I. 1963 Appl. Phys. Letters 3, 210.CrossRefGoogle Scholar
Ludmirsky, A. et al. 1985 IEEE Trans. of Plasma Sci. 13, 132.CrossRefGoogle Scholar
Mendel, C.W. & Olsen, J.N. 1975 Phys. Rev. Lett. 34, 859.CrossRefGoogle Scholar
Peratt, A.L. 1988 Laser Part. Beams 6, 385.CrossRefGoogle Scholar
Raadu, M.A. 1989 Phys. Rep. 178, 25.CrossRefGoogle Scholar
Stamper, J.A. 1991 Laser Part. Beams 9, 841.CrossRefGoogle Scholar
Szichman, H. 1988 Phys. Fluids 31, 1702.CrossRefGoogle Scholar
Wagli, P. & Donalson, T.P. 1976 Phys. Rev. Lett. 40, 457.Google Scholar