Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T20:28:23.321Z Has data issue: false hasContentIssue false

Inertial confinement fusion research by particle beams at ILE Osaka

Published online by Cambridge University Press:  09 March 2009

S. Nakai
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Imasaki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
S. Miyamoto
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
S. Higaki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
T. Ozaki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
A. Yoshinouchi
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
H. Fujita
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
K. Nishihara
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
T. Yabe
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
S. Ido
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
Y. Ohgaki
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan
C. Yamanaka
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka 565, Japan

Extract

Inertial Confinement Fusion (ICF) research has been extensively advanced with the increase of the focusable power on target by the development of glass laser technology and its higher harmonic generation (Yamanaka & Kato et al. 1981) and by CO2 lasers (Yamanaka & Nakai et al. 1981) which cover the wavelength range from 10 μm to 0·25 μm and power densities up to 1017 W/cm2. With improved understanding of the implosion in the fuel pellet, breakeven conditions, or ignition, are expected to be achieved within the 1980's with the construction of lasers in the region of 100 kJ and 100 TW output power.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergeron, K. D. 1976 Appl. Phys. Lett. 28, 306CrossRefGoogle Scholar
Bethe, A. H. 1933 Handbuch der Physik, 24, 273.Google Scholar
Birkhoff, G. 1948 J. Appl. Phys. 19, 563.CrossRefGoogle Scholar
Bogolyubskii, L. S. et al. 1976. JETP Lett. 24, 182.Google Scholar
Burns, E. et al. 1979 Appl. Phys. Lett. 35, 140.CrossRefGoogle Scholar
Chu, S. M. 1972 Phys. Fluids, 15, 413.CrossRefGoogle Scholar
Creedon, J. M. 1975 J. Appl. Phys. 46, 2946.CrossRefGoogle Scholar
Douchet, J. H. & Buzzi, M. J. 1981 Proceedings of 4th International Topical Conference on High Power Electron and Ion Beam Research and Technology,Palaiseau, France.Google Scholar
Fraley, S. G. et al. 1974 Phys. Fluids, 17, 474.CrossRefGoogle Scholar
Fujiwara, E. et al. 1981 Annual Progress Rept. on Laser Fusion Program ILE-APR-81, p. 145.Google Scholar
Goldstein, S. A. et al. 1978 Phys. Rev. Lett. 40, 1504.CrossRefGoogle Scholar
Ido, S. et al. 1980 Proceedings of 8th International Conference on Plasma Physics and Controlled Nuclear Fusion Research,IAEA.Google Scholar
Ido, S. et al. 1980 ILE Research Rept., ILE 8002P.Google Scholar
Ido, S. 1981 Proposed at 3rd IAEA Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology, Tokyo, Japan.Google Scholar
Ido, S. & Higaki, S. et al. 1981 J. Phys. Soc. Jpn. 50, 741.CrossRefGoogle Scholar
Imasaki, K. et al. 1977 Tech. Rept. Osaka Univ., 27, 165.Google Scholar
Imasaki, K. et al. 1979 Phys. Rev. Lett. 43, 1973.CrossRefGoogle Scholar
Imasaki, K. Ido, S. et al. 1980 Proceedings of 8th International Conference on Plasma Physics and Controlled Nuclear Fusion Research.Google Scholar
Imasaki, K. & Miyamoto, S. et al. 1980 Appl. Phys. Lett., 37, 533.CrossRefGoogle Scholar
Imasaki, K. & Ido, S. et al. 1981 ILE Research Rept. ILE 8130P.Google Scholar
Imasaki, K. et al. 1981 J. Phys. Soc. Jpn. 50, 3847.CrossRefGoogle Scholar
Imasaki, K., & Miyamoto, S. et al. 1981 Proceedings of 4th International Topical Conference on High Power Electron and Ion Beam Research and Technology, Palaiseau,France.Google Scholar
Imasaki, K. & Higaki, S. et al. 1981 J. Phys. Soc. Jpn., 50, 1819.CrossRefGoogle Scholar
Jackson, D. J. 1975 Classical Electrodynamics. John Wiley & Sons Inc. p. 618.Google Scholar
Johnson, D. et al. 1980 IEEE Trans. Plasma Science, PS-8, 204.CrossRefGoogle Scholar
Miyamoto, S. et al. 1980 Tech. Rept. Osaka Univ. 30, 149.Google Scholar
Miyamoto, S. et al. 1981 Jap. J. Appl. Phys. 20, 717.CrossRefGoogle Scholar
Miyamoto, S. et al. 1982 J. Appl. Phys. 53, 5440.CrossRefGoogle Scholar
Miyamoto, S. et al. 1982 Jap. J. Appl. Phys. 21, L83.CrossRefGoogle Scholar
Nardi, E. et al. 1978 Phys. Fluids, 21, 574.CrossRefGoogle Scholar
Nardi, E. et al. 1981 Appl. Phys. Lett. 39, 46.CrossRefGoogle Scholar
Nishiguchi, A. et al. 1981 ILE Research Rept. ILE 8132P, to be published in J. Comp. Phys.Google Scholar
Northcliffe, L. 1963 Ann. Rev. Nucl. Sci. 13, 67.CrossRefGoogle Scholar
Nozaki, K. et al. 1977 J. Phys. Soc. Jpn. 43, 1393.CrossRefGoogle Scholar
Okehara, J. et al. 1981 J. Phys. Soc. Jpn. 50, 3085.CrossRefGoogle Scholar
Ottinger, P. et al. 1980 Phys. Fluids, 23, 909.CrossRefGoogle Scholar
Ozaki, T. et al. 1981 ILE Research Rept. ILE 8108P.Google Scholar
Ozaki, T. et al. 1981 Jap. J. Appl. Phys. 20, 843.CrossRefGoogle Scholar
Ozaki, T. et al. 1982 Jap. J. Appl. Phys. 21, L80.CrossRefGoogle Scholar
Ozaki, T. et al. 1982 ILE Research Rept. ILE 8202T.Google Scholar
Rudakov, I. L. 1980 IAEA Technical meeting on Advances in Inertial Confinement Systems, Takardazuka,Japan.Google Scholar
Suuz, S. et al. 1978 Appl. Phys. Lett. 39, 885.Google Scholar
Stephanakis, S. J. et al. 1981 Proceedings of the 8th IEEE International Conference on Plasma Science, Santa Fe, 1C9.Google Scholar
Sudan, R. N. et al. 1973 Phys. Rev. Lett. 31, 1174.CrossRefGoogle Scholar
Whaling, W. 1958 Handbuch der Physik, 34, 193.Google Scholar
Wright, T. P. 1979 Phys. Fluids, 22, 1831.CrossRefGoogle Scholar
Yamanaka, C. & Kato, Y. et al. 1981 IEEE J. Quantum Electron. QE-17, 1639.CrossRefGoogle Scholar
Yamanaka, C. & Nakai, S. et al. 1981 IEEE J. Quantum Electron. QE-17, 1678.CrossRefGoogle Scholar
Young, F. et al. 1977 Rev. Sci. Instrum. 48, 432.CrossRefGoogle Scholar
Young, F. et al. 1981 in Conference Record of IEEE International Conference on Plasma Science, Santa Fe, 4C3, 91.Google Scholar
Zel'dovich, B. Ya. & Raizer, P. Yu. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, 260.Google Scholar