Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T08:36:44.187Z Has data issue: false hasContentIssue false

Influence of ablation-to-critical surface distance upon Rayleigh–Taylor instability

Published online by Cambridge University Press:  09 March 2009

J. Sanz
Affiliation:
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, 28040-Madrid, Spain
A. Estevez
Affiliation:
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, 28040-Madrid, Spain

Abstract

The Rayleigh—Taylor instability is studied by means of a slab model and when slab thickness D is comparable to the ablation-to-critical surface distance. Under these conditions the perturbations originating at the ablation front reach the critical surface, and in order to determine the instability growth rate, we must impose boundary conditions at the corona. Stabilization occurs for perturbation wave numbers such that kD ˜ 10.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, L. 1978 Phys. Fluids 21, 295.CrossRefGoogle Scholar
Baker, L. 1983a Phys. Fluids 26, 627.CrossRefGoogle Scholar
Baker, L. 1983b Phys. Fluids 26, 950.CrossRefGoogle Scholar
Bodner, E. 1974 Phys. Rev. Lett. 33, 761.CrossRefGoogle Scholar
Emery, M. H., Dahlburg, J. P. & Gardner, J. H. 1988 Phys. Fluids 31, 1007.CrossRefGoogle Scholar
Gitomer, S. J., Morse, R. L. & Newberger, B. S. 1977 Phys. Fluids 20, 234.CrossRefGoogle Scholar
Grun, J. et al. 1987 Phys. Rev. Lett. 58, 2672.CrossRefGoogle Scholar
Kull, H. J. 1989 Phys. Fluids B 1, 170.CrossRefGoogle Scholar
Kull, H. J. & Anisimov, S. I. 1986 Phys. Fluids 29, 2067.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluids Mechanics (Pergamon, New York), pp. 486, 488.Google Scholar
Manheimer, W. H. & Colombant, D. G. 1984 Phys. Fluids 27, 983.CrossRefGoogle Scholar
Max, C. E., McKee, C. F. & Mead, W. C. 1980 Phys. Fluids 23, 1620.CrossRefGoogle Scholar
Nishimura, H. et al. 1988 Phys. Fluids 31, 2875.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Proc. London Math. Soc. 14, 170; reprinted in Scientific Papers (Cambridge University Press, Cambridge), Vol. II pp. 200–1900.Google Scholar
Sanz, J. et al. 1981 Phys. Fluids 24, 2098.CrossRefGoogle Scholar
Takabe, H. et al. 1985 Phys. Fluids 28, 3676.CrossRefGoogle Scholar
Taylor, G. I. 1950 Proc. R. Soc. London A 201, 192.Google Scholar
Verdon, C. P. et al. 1982 Phys. Fluids 25, 1653.CrossRefGoogle Scholar