Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T02:45:39.616Z Has data issue: false hasContentIssue false

Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration

Published online by Cambridge University Press:  01 April 2008

M. Ghoranneviss
Affiliation:
Plasma Physics Research Centre, Science and Research Division, Islamic Azad University, Tehran-Poonak, Iran
B. Malekynia
Affiliation:
Plasma Physics Research Centre, Science and Research Division, Islamic Azad University, Tehran-Poonak, Iran
H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
X. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au

Abstract

Fast ignition for fusion energy by using petawatt-picosecond (PW-ps) laser pulses was modified due to an anomaly based on extremely clean suppression of prepulses. The resulting plasma blocks with space charge neutral ion current densities above 1011 Amp/cm2 may be used to ignite deuterium-tritium at densities at or little above solid state density. The difficulty is to produce extremely high energy flux densities of the blocks. Results are reported how the threshold can be reduced by a factor up to fife if the inhibition factor for thermal conductivity due to electric double layers is included in the hydrodynamic analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Badziak, J., Hora, H., Woryna, S., Jablonski, S., Laska, L., Parys, P., Rohlena, K. & Wolowski, J. (2003). Experimental evidence of differences of fast ion fluxes from short-pule and long-pulse laser-plasma interaction. Phys. Lett A 312, 452457.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. App Phys. Lett 85, 30413043.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT, In Laser Interaction and Related Plasma Phenomena, Schwarz, H. & Hora, H., eds., Vol. 4B, pp. 465494, New York: Plenum Press.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413.CrossRefGoogle Scholar
Cicchitelli, L., Elijah, J.S., Eliezer, S., Ghatak, A.K., Goldsworthy, M.P., Hora, H. & Laousis, P. (1984). Pellet fusion gain calculations modified by electric double layers and by spin polarized nuclei. Laser Part. Beams 2, 467475.CrossRefGoogle Scholar
Dean, S.O. (2008). The Rationale for an Expanding Inertial Fusion Energy Program. J. Fusion Energy 27, No. 4, available from http://springerlink.metropress.com. or IFE_whitepaper.pdf.CrossRefGoogle Scholar
Deng, Xi-Ming, Tao, Wao-Hai & Wang, Run-Wen (1982). Hydrodynamic evaluation of laser irradiated pellets. Plasma Nucl. Fusion China 1, 187.Google Scholar
Eliezer, S. & Hora, H. (1989). Double-layers in laser-produced. Phys. Rept. 172, 339407.CrossRefGoogle Scholar
Eliezer, S., Ghatak, A.J., Hora, H. & Teller, E. (2002). Fundamentals of Equations of State. Singapore: World Scientific.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1-4.CrossRefGoogle ScholarPubMed
Eisenbarth, S., Rosmei, O.N., Shevelko, V.P., Blazevic, A. & Hoffmann, D.H.H. (2007). Numerical simulations of the projectile ion charge difference in solid gaseous stopping matter. Laser Pat. Beams 25, 601612.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams, 23, 4753.CrossRefGoogle Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma, Phys. Fluids 12, 182191.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas, J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1984). Interpenetration burn for controlled inertial confienement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2000). Laser Plasma Physics: Forces and the Nonlinearity Principle. Bellingham WA: SPIE Press.Google Scholar
Hora, H. (2002). Fusion reactor with petawatt laser. German Patent Disclosure (Offenelgungsschrift) DE 102 08 515 A1 (28 FEB 2002, declassified 5 SEP 2002).Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plamsa interaction. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction, Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H, Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume igntion for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Y-T, Liang, T-J, Liu, H., Sheng, Z-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity Phys. Plasmas 14, 072701-1/072701-7.CrossRefGoogle Scholar
Khoda-Bakhsh, R., Soltanian, A., Amniat-Talab, M. (2007). Volume ignition of 3He pellets. Nucl. Instrum. & Methods A 581, 839843.CrossRefGoogle Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasmas blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Kulsrud, R. (1983). Book Review. Physics Today 34 No. 4, 56 (3rd Col. 7th line).Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction, Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns. MJ laser pulses. Laser Part. Beams 23 (4): 453460.CrossRefGoogle Scholar
Nuckolls, J.H. & Wood, L. (2002). Future of Inertial Fusion Energy. Preprint UCRL-JC-149860. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
Patin, D., Lefebvre, E., Bourdier, A. & D'humieres, E. (2006). Stochastic heating in ultra high intensity laser-plasma interaction:theory and PIC code simulations. Laser Part. Beams 24, 223.CrossRefGoogle Scholar
Rockett, P.C., Tarvin, J.A., Busch, G.A., Charatis, G., Johnson, R.R., Schroeder, R., Shpepard, C.L., Simpson, J.D., Slater, D.C., Sullivan, D. & Bird, C.K. (1883). Fast pusher experiments for laser irradiated fusion pellets. Europhysics Conference Abstracts (Fusion Aachen) 7D, 11.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neelz, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas, Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Scheffel, C.H.R., Stening, R.J., Hora, H., Hopfl, R., Martinez-Val, J.M., Eliezer, S., Kasotakis, G., Pieara, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams,15, 565574.CrossRefGoogle Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W., Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in Laboratory High-Gain ICF: Progress for the future. LLNL Report 47312. Livermore, CA: LLNL.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C, Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Yaakobi, B., Deletterz, R.L., Mccrory, R.L., Marjoribanks, R.L., Richardson, M.C., Shvarts, D., Soures, J.M, Verdon, C., Villeneuve, D.B., Boehli, T., Hutchinson, R. & Letzring, S. (1984). Thermal transport measurement in 1.05 µm laser irradiation on spherical targets. Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G.H. eds., Vol. 6, pp. 731–570, New York: Plenum Press.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev., E57, 37463752.Google Scholar