Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T20:41:16.605Z Has data issue: false hasContentIssue false

Interaction physics of the fast ignitor concept

Published online by Cambridge University Press:  09 March 2009

H. Furukawa
Affiliation:
Institute for Laser Engineering, Osaka University, Suita 565, Osaka, Japan
K. Mima
Affiliation:
Institute for Laser Engineering, Osaka University, Suita 565, Osaka, Japan
M. Murakami
Affiliation:
Institute for Laser Engineering, Osaka University, Suita 565, Osaka, Japan
K. Nishihara
Affiliation:
Institute for Laser Engineering, Osaka University, Suita 565, Osaka, Japan

Abstract

The interaction of relativistic electrons produced by ultrafast lasers and focussing them on strongly precompressed thermonuclear fuel is analytically modelled. Energy loss to target electrons is treated through binary collisions and Langmuir wave excitation. The overall penetration depth is determined by quasielastic and multiple scattering on target ions. Thus, it appears possible to ignite efficient hot spots in a target with density larger than 300 g/cc.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bohm, D. & Pines, D. 1952 Phys. Rev. 85, 338.Google Scholar
Bonnaud, G. & Lefebvre, E. 1995 Phys. Rev. Lett. 74, 200.Google Scholar
Busquet, M. 1995 Chocs 13, 57.Google Scholar
Deutsch, C. 1986 Ann. Phys. Fr. 11, 1.CrossRefGoogle Scholar
Deutsch, C. et al. 1989 Nucl. Instr. Methods A 278, 38.CrossRefGoogle Scholar
Hemmer, P.C. & Farquahr, I.E. 1968 Phys. Rev. 168, 294.CrossRefGoogle Scholar
Hubbel, H.H. & Birkoff, R.D. 1982 Phys. Rev. A 26, 2460 (also Nigam P. et al. 1959 Phys. Rev. 115, 491).CrossRefGoogle Scholar
Lindl, J. 1995 Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Mosher, D. & Bernstein, I.B. 1977 Phys. Rev. Lett. 38, 1483.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1978 Phys. Rev. A 18, 1246.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. 1996 Phys. Rev. Lett. 76, 3975.CrossRefGoogle Scholar
Rossi, B. 1963 Rev. Mod. Phys. 35, 23.Google Scholar
Shearer, J.W. et al. 1973 Phys. Rev. A 8, 1582.CrossRefGoogle Scholar
Sudan, R.N. 1988 Basic Plasma Phvsics II, Galeev, A.A. and Sudan, R.N., eds. (N.H.P.C, Amsterdam), Chap. 3, p. 337.Google Scholar
Tabak, M. et al. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Val'chuck, V.V. et al. 1995 Plasma Phys. Rep. 21, 159.Google Scholar
Wilks, S.C. 1993 Phys. Fluids 5, 2603.CrossRefGoogle Scholar
Yonas, G. 1979 IEEE Trans. Nucl. Sci. NS-26, 610.Google Scholar