Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T22:32:02.080Z Has data issue: false hasContentIssue false

Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury

Published online by Cambridge University Press:  20 November 2008

G. Priebe*
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
D. Laundy
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
M.A. Macdonald
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
G.P. Diakun
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
S.P. Jamison
Affiliation:
Accelerator Science and Technology Centre, Daresbury Laboratory, Cheshire, United Kingdom
L.B. Jones
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom Accelerator Science and Technology Centre, Daresbury Laboratory, Cheshire, United Kingdom
D.J. Holder
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom Accelerator Science and Technology Centre, Daresbury Laboratory, Cheshire, United Kingdom
S.L. Smith
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom Accelerator Science and Technology Centre, Daresbury Laboratory, Cheshire, United Kingdom
P.J. Phillips
Affiliation:
University of Dundee, Division of Electronic Engineering and Physics, Dundee, United Kingdom
B.D. Fell
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
B. Sheehy
Affiliation:
Sheehy Scientific Consulting, Wading River, New York
N. Naumova
Affiliation:
Laboratoire d'Optique Appliquee, Chemin de la Huniere, Palaiseau, France
I.V. Sokolov
Affiliation:
Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan
S. Ter-Avetisyan
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
K. Spohr
Affiliation:
Department of Electronic Engineering and Physics, University of Paisley, Glasgow, United Kingdom
G.A. Krafft
Affiliation:
Thomas Jefferson National Accelerator Facility, Jefferson Avenue, Newport News, Virginia
J.B. Rosenzweig
Affiliation:
University of California at Los Angeles, Department of Physics and Astronomy, Los Angeles, California
U. Schramm
Affiliation:
Forschungszentrum Dresden-Rossendorf, Dresden, Germany
F. Grüner
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany
G.J. Hirst
Affiliation:
STFC Rutherford Appleton Laboratory, Chilton, Didcot, United Kingdom
J. Collier
Affiliation:
STFC Rutherford Appleton Laboratory, Chilton, Didcot, United Kingdom
S. Chattopadhyay
Affiliation:
Cockcroft Institute, Daresbury Science and Innovation Campus, Warrington, United Kingdom
E.A. Seddon
Affiliation:
Science and Technology Facilities Council, Daresbury Laboratory, Cheshire, United Kingdom
*
Address correspondence and reprint requests to: G. Priebe, STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK. E-mail: gerd.priebe@stfc.ac.uk

Abstract

Inverse Compton scattering is a promising method to implement a high brightness, ultra-short, energy tunable X-ray source at accelerator facilities. We have developed an inverse Compton backscattering X-ray source driven by the multi-10 TW laser installed at Daresbury. Hard X-rays, with spectral peaks ranging from 15 to 30 keV, depending on the scattering geometry, will be generated through the interaction of laser pulses with electron bunches delivered by the energy recovery linac machine, initially known as energy recovery linac prototype and subsequently renamed accelerators and lasers in combined experiments. X-ray pulses containing 9 × 107 photons per pulse will be created from head-on collisions, with a pulse duration comparable to the incoming electron bunch length. For transverse collisions 8 × 106 photons per pulse will be generated, where the laser pulse transit time defines the X-ray pulse duration. The peak spectral brightness is predicted to be ~1021 photons/(s mm2 mrad2 0.1% Δλ/λ).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.CrossRefGoogle Scholar
Alferov, D.F., Bashmakov, Yu. & Bessonov, E.G. (1974). Undulator radiation. Sov. Phys. Tech. Phys. 18, 1337.Google Scholar
Arthur, G., Materlik, A.G., Tatchyn, R. & Winick, H. (1995). The LCLS: A fourth generation light source using the SLAC linac. Rev. Sci. Instr. 66, 1987.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Baker, S., Robinson, J.S., Haworth, C.A., Teng, H., Smith, R.A., Chiril, C.C., Lein, M., Tisch, J.W. & Marangos, J.P. (2006). Probing proton dynamics in molecules on an attosecond timescale. Science 312, 4247.CrossRefGoogle Scholar
Bazerov, I., Belomestnykh, S., Bilderback, D., Finkelstein, K., Fontes, E., Gray, S., Gruner, S.M., Krafft, G.A., Merminga, H., Helmke, R., Rogers, J., Sinclair, C., Talman, R. & Tigner, M. (2001). Study for a proposed phase I energy recovery linac (ERL) synchrotron light source. CHESS Technical Memo 01-003, JLAB-ACT-01-04. Ithica: Cornell University.Google Scholar
Berden, G., Jamison, S.P., MacLeod, A.M., Gillespie, W.A., Redlich, B. & van der Meer, A.F.G. (2004). Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles. Phys. Rev. Lett. 93, 114802.CrossRefGoogle ScholarPubMed
Borland, M. (2006). Evaluation of the possibility of upgrading the advanced photon source to an energy recovery linac. Nucl. Instr. Meth. A 557, 224229.CrossRefGoogle Scholar
Brabec, T., Spielmann, Ch., Curley, P.F. & Krausz, F. (1992). Kerr lens mode locking. Opt. Lett. 17, 1292.CrossRefGoogle ScholarPubMed
Brown, L.S. & Kibble, T.W.B. (1964). Interaction of intense laser beams with electrons. Phys. Rev. 133, A705.CrossRefGoogle Scholar
Catravas, P., Esarey, E. & Leemans, W.P. (2001). Femtosecond Thomson scattering X-ray source based on laser wakefield accelerator for ultrafast X-ray absorption spectroscopy. Meas. Sci. Technol. 12, 1828.CrossRefGoogle Scholar
Chen, L.M., Kando, M., Xu, M.H., Li, Y.T., Koga, J., Chen, M., Xu, H., Yuan, X.H., Dong, Q.L., Sheng, Z.M., Bulanov, S.V., Kato, Y., Zhang, J. & Tajima, T. (2008). Study of X-ray emission: Enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett. 100, 045004.CrossRefGoogle Scholar
Chouffani, K., Harmon, F., Wells, D., Jones, J. & Lancaster, G. (2006). Laser-Compton scattering as a tool for electron beam diagnostics. Laser Part. Beams 24, 411.CrossRefGoogle Scholar
Coisson, R. (1979). Angular-spectral distribution and polarization of synchrotron radiation from a “short” magnet. Phys. Rev. A 20, 524.CrossRefGoogle Scholar
Compton, A.H. (1923). A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207 & 483.CrossRefGoogle Scholar
Divall, E.J. & Ross, I.N. (2004). High dynamic range contrast measurements by use of an optical parametric amplifier correlator. Opt. Lett. 29, 2273.CrossRefGoogle ScholarPubMed
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright gamma X-ray sources. Laser Part. Beams 23, 309.CrossRefGoogle Scholar
Gruner, S.M. & Tigner, M. (2001). Study for a proposed phase I energy recovery linac (ERL) synchrotron light source. CHESS Technical Memo 01-003, JLAB-ACT-01-04. Ithica: Cornell University.Google Scholar
Guo, T., Spielmann, C., Walker, B.C. & Barty, C.P.J. (2001). Generation of hard X-rays by ultrafast terawatt lasers. Rev. Sci. Instrum. 72, 41.CrossRefGoogle Scholar
Hafz, N., Lee, H.J., Kim, G.H., Suk, H. & Lee, J. (2003). Femtosecond X-ray generation via the Thomson scattering of a terawatt laser from electron bunches produced from the LWFA utilizing a plasma density transition. IEEE Trans. Plasma Sci. 31, 1388.CrossRefGoogle Scholar
Hartemann, F.V., Baldis, H.A., Kerman, A.K., Le Foll, A., Luhmann, N.C. & Rupp, B. (2001). Three-dimensional theory of emittance in Compton scattering and X-ray protein crystallography. Phys. Rev. E 64, 016501.CrossRefGoogle ScholarPubMed
Hartemann, F.V., Brown, W.J., Gibson, D.J., Anderson, S.G., Tremaine, A.M., Springer, P.T., Wootton, A.J., Hartouni, E.P. & Barty, C.P.J. (2005). High-energy scaling of Compton scattering light sources. Phys. Rev. Spec. Top. 8, 100702.Google Scholar
Hartemann, F.V., Tremaine, A.M., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Gibson, D.J., Fittinghoff, D.N., Kuba, J., Le Sage, G.P., Slaughter, D.R., Wootton, A.J., Hartouni, E.P., Springer, P.T., Rosenzweig, J.B. & Kerman, A.K. (2004). Characterization of a bright tunable ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.CrossRefGoogle Scholar
Helliwell, J.R. & Rentzepis, P.M. (1997). Time-resolved diffraction. In Time-Resolved X-ray and Electron Diffraction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Jamison, S.P., MacLeod, A.M., Berden, G., Jaroszynski, D.A. & Gillespie, W.A. (2006). Temporally resolved electro-optic effect. Opt. Lett. 31, 1753.CrossRefGoogle ScholarPubMed
Jamison, S.P., Shen, J., MacLeod, A.M., Gillespie, W.A. & Jaroszynski, D.A. (2003). High-temporal-resolution, single-shot characterization of terahertz pulses. Opt. Lett. 28, 1710.CrossRefGoogle ScholarPubMed
Janulewicz, K.A., Lucianetti, A., Priebe, G. & Nickles, P.V. (2004 a). Review of state-of-the-art and output characteristics of table-top soft X-ray lasers. X-ray Spec. 33, 262266.Google Scholar
Janulewicz, K.A., Priebe, G., Tümmler, J. & Nickles, P.V. (2004 b). Single-pulse low-energy-driven transient inversion X-ray lasers. IEEE J. Quant. Electr. 10, 13681372.CrossRefGoogle Scholar
Janulewicz, K.A., Tummler, J., Priebe, G. & Nickles, P.V. (2005). Plasmakinetics perspective of a collisional Ni-like X-ray laser pumped by a single profilled laser pulse. Phys. Rev. A 72, 043825.CrossRefGoogle Scholar
Khattak, F., Saiz, E.G., Dzelzainis, T., Riley, D. & Zhai, Z. (2007). Scale-length optimizing of short pulse Cu K-alpha laser plasma sources. Appl. Phys. Lett. 90, 081502.CrossRefGoogle Scholar
Kim, K.J. (1989). Physics of particle accelerators. AIP Conf. Proc. 184, 565.CrossRefGoogle Scholar
Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1994). Generation of femtosecond X-rays by 90 degrees Thomson scattering. Nucl. Instr. Meth. A 341, 351.CrossRefGoogle Scholar
Klein, O. & Nishina, Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (About the scattering of radiation by free electrons after the new relativistic quantum dynamics of Dirac). Zeit. f. Phys. 52, 853.CrossRefGoogle Scholar
Krafft, G.A. (2004). Spectral distributions of Thomson-scattered photons from high-intensity pulsed lasers. Phys. Rev. Lett. 92, 204802.CrossRefGoogle ScholarPubMed
Krafft, G.A., Doyuran, A. & Rosenzweig, J.B. (2005). Pulsed-laser nonlinear Thomson scattering for general scattering geometries. Phys. Rev. E 72, 056502.CrossRefGoogle ScholarPubMed
Kulipanov, G.N., Skrinsky, A.N. & Vinokurov, N.A. (1998). Synchrotron light sources and recent developments of accelerator technology. J. Sync. Radiat. 5, 176.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. (1975). Classical Theory of Fields. Butterworth-Heinemann. Oxford: Oxford University Press.Google Scholar
Leemans, W., Chattopadhyay, S., Esarey, E., Zholents, A., Zolotorev, M., Chin, A., Schoenlein, R. & Shank, C. (2000). Femtosecond X-ray generation through relativistic electron beam-laser interaction. Phys. Astrophys. 1, 279296.Google Scholar
Leemans, W.P., Schoenlein, R.W., Volfbeyn, P., Chin, A.H., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.-J., Chattopadhyay, S. & Shank, C.V. (1997). Interaction of relativistic electrons with ultrashort laser pulses: generation of femtosecond X-rays and microprobing of electron beams. IEEE J. Quan. Electron. 33, 19251934.CrossRefGoogle Scholar
Leemans, W.P., Volfbeyn, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S., Schoenlein, R., Balling, P., Shank, C.V., Chin, A. & Glover, E. (1996). Laser-based sub-picosecond electron bunch characterization using 90 degrees Thomson scattering. Phys. Rev. Lett. 77, 4182.CrossRefGoogle Scholar
Legall, H., Stiel, H., Arkadiev, V. & Bjeoumikhov, A.A. (2006). High spectral resolution X-ray optics with highly oriented pyrolytic graphite. Opt. Express 14, 10.CrossRefGoogle ScholarPubMed
Li, Y., Huang, Z., Borland, M.D. & Milton, S. (2002). Small-angle Thomson scattering of ultrafast laser pulses for bright, sub-100-fs X-ray radiation. Phys. Rev. 5, 044701.Google Scholar
Lucianetti, A., Janulewicz, K.A., Kroemer, R., Priebe, G., Tummler, J., Sandner, W., Nickles, P.V. & Redkorechev, V.I. (2004). Transverse spatial coherence of a transient nickellike silver soft-X-ray laser pumped by a single picosecond laser pulse. Opt. Lett. 29 (8), 881883.CrossRefGoogle ScholarPubMed
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Materlik, A.G., Tatchyn, R. & Winick, H. (1995). The LCLS: A fourth generation light source using the SLAC linac. Rev. Sci. Instr. 66, 1987.Google Scholar
Neil, G.R., Behre, C., Benson, S.V., Bevins, M., Biallas, G., Boyce, J., Coleman, J., Dillon-Townes, L.A., Douglas, D., Dylla, H.F., Evans, R., Grippo, A., Gruber, D., Gubeli, J., Hardy, D., Hernandez-Garcia, C., Jordan, K., Kelley, M.J., Merminga, L., Mammosser, J., Moore, W., Nishimori, N., Pozdeyev, E., Preble, J., Rimmer, R., Shinn, M., Siggins, T., Tennant, C., Walker, R., Williams, G.P. & Zhang, S. (2005). The JLab High Power ERL Light Source, The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs. Newport News, VA: Jefferson Lab.Google Scholar
Notley, M.M., Weber, R.L., Fell, B., Jeffries, J., Freeman, R.R., Mackinnon, A.J., Dickson, R., Hey, D., Khattak, F., Saiz, E.G. & Gregori, G. (2006). Development of time resolved X-ray spectroscopy in high intensity laser-plasma interactions. Rev. Sci. Instr. 77, 10F322.CrossRefGoogle Scholar
Ozaki, T., Kieffer, J.C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101–6.CrossRefGoogle Scholar
Phuoc, K.Ta., Rousse, A., Pittman, M., Rousseau, J.P., Malka, V., Fritzler, S., Umstadter, D. & Hulin, D. (2003). X-Ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma. Phys. Rev. Lett. 91, 195001.CrossRefGoogle Scholar
Pogorelski, I.V., Ben-Zvi, I., Hirose, T., Kashiwagi, S., Yakimenko, V., Kusche, K., Siddons, P., Skaritka, J., Kumita, T., Tsunemi, A., Omori, T., Urakawa, J., Washio, M., Yokoya, K., Okugi, T., Liu, Y., He, P. & Cline, D. (2000). Demonstration of 8 × 1018 photons/second peaked at 1.8 Å in a relativistic Thomson scattering experiment. Phys. Rev. 3, 090702.Google Scholar
Poole, M.W., Bennett, S.L., Bowler, M.A., Bliss, N., Dykes, D.M., Farrow, R.C., Gerth, C., Holder, D.J., MacDonald, M.A., Muratori, B., Owen, H.L., Quinn, F.M., Seddon, E.A., Smith, S.L., Suller, V.P., McNeil, B.J., Ross, I.N. & Thompson, N.R. (2003). 4GLS: A new type of fourth generation light source facility. Proc. of the 2003 Particle Accelerator Conference, pp. 189191. Piscataway, NJ: IEEE.CrossRefGoogle Scholar
Priebe, G., Redkorechev, V.I., Janulewicz, K.A. & Nickles, P.V. (2006). Pulse shape measurement by a non-collinear third-order correlation technique. Opt. Commun. 259, 848.CrossRefGoogle Scholar
Ride, S.K., Esarey, E. & Baine, M. (1995). Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E 52, 5425.CrossRefGoogle ScholarPubMed
Riley, D., Angulo-Gareta, J.J., Khattak, F.Y., Lamb, M.J., Foster, P.S., Divall, E.J., Hooker, C.J., Langley, A.J., Clarke, R.J. & Neely, D. (2005). Kα yields from Ti foils irradiated with ultrashort laser pulses. Phys. Rev. E 71, 016406.CrossRefGoogle ScholarPubMed
Ross, M.C., Alley, R., Arnett, D., Bong, E., Colocho, W., Frisch, J., Hortonsmith, S., Inman, W., Jobe, K., Kotseroglou, T., McCormick, D., Nelson, J., Scheeff, M. & Wagner, S. (1997). A laser-based beam profile monitor for the SLC/SLD interaction region. AIP Conf. Proc. 390, 281289.CrossRefGoogle Scholar
Salamin, Y.I. & Faisal, F.H.M. (1996). Harmonic generation by superintense light scattering from relativistic electrons. Phys. Rev. A 54, 4383.CrossRefGoogle ScholarPubMed
Sansone, G., Benedetti, E., Calegari, F., Vozzi, C., Avaldi, L., Flammini, R., Poletto, L., Villoresi, P., Altucci, C., Velotta, R., Stagira, S., De Silvestri, S. & Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Science 314, 443.CrossRefGoogle ScholarPubMed
Sarachik, E.S. & Schappert, G.T. (1970). Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738.CrossRefGoogle Scholar
Schoenlein, R.W., Chattopadhyay, S., Chong, H.H.W., Glover, T.E., Heimann, P.A., Shank, C.V., Zholents, A.A. & Zolotorev, M.S. (2000 a). Generation of femtosecond pulses of synchrotron radiation. Science 2237.CrossRefGoogle ScholarPubMed
Schoenlein, R.W., Chattopadhyay, S., Chong, H.H.W., Glover, T.E., Heimann, P.A., Leemans, W.P., Shank, C.V., Zholents, A. & Zolotorev, M. (2000 b). Generation of femtosecond X-ray pulses via laser-electron beam interaction. Appl. Phys. B 71, 110.CrossRefGoogle Scholar
Schoenlein, R.W., Leemans, W.P., Chin, A.H., Volfbeyn, P., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1996). Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236.CrossRefGoogle Scholar
Service, R.F. (2002). Battle to become the next generation X-ray source. Science 298, 1356.CrossRefGoogle ScholarPubMed
Siders, W., Cavalleri, A., Sokolowski-Tinten, K., Tóth, CS., Guo, T., Kammler, M., Wilson, K.R., von der Linde, D. & Barty, C.P.J. (1999). Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340.CrossRefGoogle ScholarPubMed
Smith, S.L., Muratori, B.D., Owen, H.L., Hoffstaetter, G.H., Litvinenko, V.N., Ben-Zvi, I., Bai, M., Beebe-Wang, J., Blaskiewicz, M., Calaga, R., Fischer, W., Chang, X.Y., Kayran, D., Kewisch, J., MacKay, W.W., Montag, C., Parker, B., Ptitsyn, V., Roser, T., Ruggiero, A., Satogata, T., Surrow, B., Tepikian, S., Trbojevic, D., Yakimenko, V., Zhang, S.Y. & Piot, P. (2005). Optics designs of ongoing ERL projects. Nucl. Instr. Meth. A 557, 145164.CrossRefGoogle Scholar
Smith, S.L., Bliss, N., Goulden, A.R., Holder, D.J., McIntosh, P.A. & Priebe, G. (2007). The status of the Daresbury energy recovery linac prototype. IEEE Part. Acc. Conf. 1–11, 33053307.Google Scholar
Sokolowski-Tinten, K. & von der Linde, D. (2004). Ultrafast phase transitions and lattice dynamics probed using laser-produced X-ray pulses J. Phys. Condens. Matter 16, R1517R1536.CrossRefGoogle Scholar
Spence, D.E., Kean, P.N. & Sibbett, W. (1991). 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42.CrossRefGoogle ScholarPubMed
Stingl, A., Lenzner, M., Spielmann, Ch., Krausz, F. & Szipocs, R. (1995). Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20, 602.CrossRefGoogle ScholarPubMed
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Com. 56, 219.CrossRefGoogle Scholar
Sundaram, S.K. & Mazur, E. (2002). Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mat. 1, 217224.CrossRefGoogle ScholarPubMed
Suwada, T., Iida, N., Funakoshi, Y., Kawamoto, T. & Kikuchi, M. (1997). First beam test result of a prototype wire scanner for the KEKB injector linac and BT lines. Proc. of 11th Symp. Acc. Tech. Sc., Ako, Hyogo, Japan, 97184.Google Scholar
Tannebaum, P. & Shintake, T. (1999). Measurement of small electron-beam spots. Ann. Rev. Nucl. Part. Sci. 49, 125162.CrossRefGoogle Scholar
Tigner, M. (1965). A possible apparatus for electron clashing experiments. Nuovo Cimento 37, 12281231.CrossRefGoogle Scholar
Tomov, I.V., Oulianov, D.A., Chen, P. & Rentzepis, P.M. (1999). Ultrafast time-resolved transient structures of solids and liquids studied by means of X-ray diffraction and EXAFS. J. Phys. Chem. B. 103, 7081.CrossRefGoogle Scholar
Tümmler, J., Janulewicz, K.A., Priebe, G. & Nickles, P.V. (2005). 10-Hz grazing-incidence pumped Ni-like Mo X-ray laser. Phys. Rev. E 72, 037401.CrossRefGoogle ScholarPubMed
Umstadter, D. (2003). Relativistic laser plasma interactions. J. Phys. D: Appl. Phys. 36, R151.CrossRefGoogle Scholar
von der Linde, D. (2003). A picosecond view of melting. Science 302, 1345.CrossRefGoogle ScholarPubMed
von Laue, M. (1936). Die äußere form der kristalle in ihrem einfluß auf die interferenzerscheinungen an raumgittern. Annalen der Physik 26, 55.CrossRefGoogle Scholar
Wark, J. (1999). X-ray diffraction: Table-top picosecond sources. Nature 398, 284285.CrossRefGoogle Scholar
Watson, J.D. & Crick, F.H.C. (1953). Implications of the structure of deoxyribonucleic acid. Nature 171, 964967.CrossRefGoogle ScholarPubMed
Xia, B., Li, Z., Kang, K., Huang, W., Huang, G., He, X., Du, Y. & Tang, C. (2004). Evaluation and simulations of a Thomson scattering X-ray source based on ray tracing methods. Laser Part. Beams 22, 355.CrossRefGoogle Scholar
Yang, J., Washio, M., Endo, A. & Hori, T. (1999). Evaluation of fs X-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light. Nucl. Instr. Meth. Phys. Res. A 428, 556.CrossRefGoogle Scholar
Zhavoronkov, N., Gritsai, Y., Bargheer, M., Woerner, M. & Elsaesser, T. (2005). Generation of ultrashort Kα radiation from quasipoint interaction area of femtosecond pulses with thin foils. Appl. Phys. Lett. 86, 244107.CrossRefGoogle Scholar