Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T08:30:12.307Z Has data issue: false hasContentIssue false

Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems

Published online by Cambridge University Press:  23 January 2009

A. Kasperczuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Pisarczyk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Ph. Nicolai
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux, Talence, France
Ch. Stenz
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux, Talence, France
V. Tikhonchuk
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux, Talence, France
M. Kalal*
Affiliation:
Czech Technical University in Prague, FNSPE, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics AS CR, Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
K. Masek
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
D. Klir
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
J. Kravarik
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
P. Kubes
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, ICS, Warsaw, Poland
*
Address correspondence and reprint requests to: Milan Kalal, Czech Technical University in Prague, FNSPE, Brehova 7, 115 19 Prague 1, Czech Republic. E-mail: kalal@fjfi.cvut.cz

Abstract

Interactions of laser driven plasma jets with He and Ar gas puffs was investigated experimentally by means of three-frame interferometric/shadowgraphic system and three-frame X-ray pinhole camera. A defocused iodine laser beam using the Prague Asterix Laser System (PALS) interacting with massive planar Cu targets generated high-speed well-collimated plasma jets. The PALS third harmonic (0.438 µm), with pulse duration of 250 ps (full width at half maximum), and energy of 100 J was employed in two irradiation geometries: with an incidence normal to the target surface and with an oblique one (30° with respect to the target normal), in order to minimize the heating of the ambient gas by the laser beam. The results of these interaction experiments, in particular, those obtained in case of the oblique incidence geometry, are presented and discussed. They show the effect of the double shock formation in ambient gases: starting by the ablative plasma action, followed by that of the jet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, N., Gruber, J. & Heitz, J. (1999). Spherical expansion of the vapor plume into ambient gas: An analytical model. Appl. Phys. A 69, S87S93.Google Scholar
Beilis, I.I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.Google Scholar
Blue, E., Weber, S.V., Glendinning, S.G., Lanier, N.E., Woods, D.T., Bono, M.J., Dixit, S.N., Haynam, C.A., Holder, J.P., Kalantar, D.H., MacGowan, B.J., Nikitin, A.J., Rekow, V.V., Van Wonterghem, B.M., Moses, E.I., Stry, P.E., Wilde, B.H., Hsing, W.W. & Robey, H.F. (2005). Experimental investigation of high-Mach-number 3D hydrodynamic jets at the National Ignition Facility. Phys. Rev. Lett. 94, 095005-1/095005-4.Google Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Rev. Lett. 83, 19821985.Google Scholar
Goldman, S.R., Caldwell, S.E., Wilke, M.D., Wilson, D.C., Barnes, C.W., Hsing, W.W., Delamater, N.D., Schappert, G.T., Grove, J.W., Lindman, E.L., Wallance, J.M. & Weaver, R.P. (1999). Shock structuring due to fabrication joints in targets. Phys. Plasmas 6, 33273336.Google Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.Google Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Miklaszewski, R., Parys, P., Rosinski, M., Wolowski, J., Stenz, Ch., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 b). Influence of the focal point position on the properties of a laser-produced plasma. Phys. Plasmas 14, 102706-1/102706-8.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704-1/062704-8.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 a). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.Google Scholar
Kolacek, K., Schmidt, J., Prukner, V., Frolov, O. & Straus, J. (2008). Ways to discharge-based soft X-ray lasers with the wavelength lambda <15 nm. Laser Part. Beams 26, 167178.Google Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardier, T. (2002). Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 562, 113119.CrossRefGoogle Scholar
Mizuta, A., Yamada, S. & Takabe, H. (2002). Numerical analysis of jets produced by intense laser. Astrophys. J. 567, 635642.Google Scholar
Nicolai, Ph., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701-1/062701-8.Google Scholar
Ramis, R., Ramirez, J. & Schurtz, G. (2008). Implosion symmetry of laser-irradiated cylindrical targets. Laser Part. Beams 26, 113126.Google Scholar
Remington, B.A., Drake, R.P. & Ryutov, D.D. (2006). Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys. 78, 755807.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koaste, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophsical jets. Phys. Rev. E 62, 88388841.Google Scholar
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.Google Scholar
Wen, S.-B. & Mao, X. (2007). Expansion of the laser ablation vapor plume into a background gas. I. Analysis. J. Appl. Phys. 101, 023114-1/023114-13.Google Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.Google Scholar