Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T12:12:07.947Z Has data issue: false hasContentIssue false

Ion charge state and energy enhancement by axial magnetic field applied during laser produced plasma expansion

Published online by Cambridge University Press:  09 September 2016

S.A. Abbasi
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan Department of Physics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
A.H. Dogar
Affiliation:
National Institute of Lasers and Optronics, Nilore, Islamabad, Pakistan
B. Ilyas
Affiliation:
Optics Laboratories, P.O. Box 1021, Islamabad, Pakistan
S. Ullah
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
M. Rafique
Affiliation:
Department of Physics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
A. Qayyum*
Affiliation:
Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
*
Address correspondence and reprint requests to: A. Qayyum, Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan. E-mail: aqayyum11@yahoo.com

Abstract

The effects of axial magnetic field on the properties of the ions ejected from Nd:YAG laser (wavelength = 1064 nm, pulse duration = 6 ns) produced expanding Cu plasma were investigated. A plane Cu target, without and with 0.23 T axial magnetic field at its surface, was irradiated in the fluence range of 2–24 J/cm2. The ions emitted along the target surface normal were analyzed with the help of ion collector and time-of-flight electrostatic ion energy analyzer. The integrated ion yield, highest ion charge state, average ion energy, and energy of individual ion charge states were found to increase by application of the magnetic field. The initial parameters of the non-equilibrium plasma such as average ion charge, equivalent potential, electron temperature, electron density, Debye length, and transient electric field were estimated from the experimental results obtained without and with application of the magnetic field. The increase of ion yield and ion charge state by application of magnetic field are most probably due to the trapping of electrons in front of the target surface, which boosts up the electron impact ionization process. The ion energy increment due to the magnetic field is discussed in the frame work of electrostatic model for ion acceleration in laser plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbasi, S.A., Hussain, M.S., Ilyas, B., Rafique, M., Dogar, A.H. & Qayyum, A. (2015). Characterization of highly charged titanium ions produced by nanosecond pulsed laser. Laser Part. Beams 33, 8186.Google Scholar
Alekseev, N.N., Balabaev, A.N., Vasilyev, A.A., Satov, Y.A., Savin, S.M., Sharkov, B.Y., Shumshurov, A.V. & Roerich, V.C. (2012). Development of laser-plasma generator for injector of C4+ ions. Laser Part. Beams 30, 6573.Google Scholar
Baraldi, G., Perea, A. & Afonso, C.N. (2011). Dynamics of ions produced by laser ablation of several metals at 193 nm. J. Appl. Phys. 109, 043302043307.Google Scholar
Braren, B., Bukoski, J. & Norton, D. (1993). Laser Ablation in Material Processing and Applications. Pittsburgh: Material Research Society.Google Scholar
Burdt, R.A., Tao, Y., Tillack, M.S., Yuspeh, S., Shaikh, N.M., Flaxer, E., Najmabadi, F. (2010). Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma. J. Appl. Phys. 107, 043303043308.Google Scholar
Caridi, F., Torrisi, L. & Cutroneo, M. (2013). Ionic and atomic characterization of laser-generatd plasmas at 5 × 109 W/cm2 pulse intensity. Appl. Sur. Sci. 272, 612.Google Scholar
Caridi, F., Torrisi, L. & Giuffrida, L. (2010). Time-of-flight and UV spectroscopy characterization of laser-generated plasma. Nucl. Inst. Meth. B 268, 499505.Google Scholar
Demtröder, W. & Jantz, W. (1970). Investigation of laser-produced plasmas from metal-surfaces. Plasma Phys. 12, 691703.Google Scholar
Doggett, B. & Lunny, J.G. (2009). Langmuir probe characterization of laser ablated plasmas. J. Appl. Phys. 105, 033306.Google Scholar
Harilal, S.S., Bindhu, C.V., Issac, R.C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.Google Scholar
Harilal, S.S., Tillack, M.S., O'Shay, B., Bindhu, C.V. & Najmabadi, F. (2004). Confinment and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E. 69, 026413.Google Scholar
Harilal, S.S., Tillack, M.S., Tao, Y., O'Shay, B., Paguio, R. & Nikroo, A. (2006). Extreme-ultraviolet spectral purity and magnetic ion debries mitigation by use of low-density tin targats. Opt. lett. 31, 15491551.Google Scholar
Hofer, R., Hass, J. & Gallimore, A. (1999). Development of a 45-degree parallel-plate electrostatic energy analyzer for hall thruster plume studies: preliminary data. Proc. 26th Int. Conf. on Electric Propulsion, October 17–21 Kitakyushu, Japan, 99–113.Google Scholar
Ikeda, S., Takahashi, K., Okamura, M. & Horioka, K. (2016). Behavior of moving plasma in solenoidal magnetic field in a laser ion source. Rev. Sci. Instum. 87, 02A912.Google Scholar
Ilyas, B., Dogar, A.H. & Qayyum, A. (2013). The effect of laser irradiance on the charge loss in expanding tungsten plasma. Nucl. Inst. Meth. B 312, 122125.Google Scholar
Ilyas, B., Dogar, A.H., Ullah, S., Mahmood, N. & Qayyum, A. (2012). Multiply charged ion emission from laser produced tungsten plasma. Laser Part. Beams 30, 651657.Google Scholar
Ilyas, B., Dogar, A.H., Ullah, S. & Qayyum, A. (2011). Laser fluence effects on ion emission from a laser-generated Cu plasma. J. Phys. D: Appl. Phys. 44, 295202295208.Google Scholar
Kashiwagi, H., Hattori, T., Hayashizaki, N., Yamamato, K., Takahashi, Y. & Hata, T. (2004). Nd-Yag laser ion source for direct injection scheme. Rev. Sci. Instum. 75, 15691571.Google Scholar
Kelly, R. (1992). Gas dynamics of the pulsed emission of a perfect gas with applications to laser sputtering and to nozzle expansion. Phys. Rev. A 46, 860874.Google Scholar
Kondo, K., Kanesue, T., Tamura, J., Dabrowski, R. & Okamura, M. (2010). Laser plasma in a magnetic field. Rev. Sci. Instum. 81, 02B716.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Margarone, D. (2007). Ion acceleration and diagnostics in laser-generated plasmas. PhD Thesis. Italy: Università degli Studi di Messina.Google Scholar
McWhirter, R.W.P. (1965). Spectral Intensities. In Plasma diagnostic techniques (Huddlestone, R.H. and Leonard, S.L., Eds.), pp. 201264. New York: Academic Press, 1995 (chapter 5).Google Scholar
Pagano, C., Hafeez, S. & Lunney, J.G. (2009). Influence of transverse magnetic field on expansion and spectral emission of laser5 produced plasma. J. Phys. D: Appl. Phys. 42, 155205.Google Scholar
Pant, H.C. (1994). Laboratory simulation of space and astrophysical plasmas using intense lasers. Phys. Scr. T50, 109113.CrossRefGoogle Scholar
Puell, H. (1970). Heating of laser produced plasma generated at plane solid target. Z. Naturforsch. B 25a, 18071815.Google Scholar
Qayyum, A. & Ahmad, S. (1994). A magnetically confined hollow cathode duoplasmatron for the PINSTECH ion implanter. Nucl. Inst. Meth. B 94, 597600.Google Scholar
Qingrun, H. & Gao, J. (1997). Pulsed laser deposition of diamond-like carbon film under a magnetic field. J. Phys. Condens. Matter 9, 1033310337.Google Scholar
Roy, A., Harilal, S.S., Hassan, S.M., Endo, A., Mocek, T. & Hassanein, A. (2015). Collimation of laser-produced plasma using axial magnetic field. Laser Part. Beams 33, 175182.CrossRefGoogle Scholar
Roy, A., Hassan, S.M., Harilal, S.S., Endo, A., Mocek, T. & Hassanein, A. (2014). Extreme ultraviolet emission and confinement of tin plasmas in the presence of amagnetic field. Phys. Plasmas 21, 053106053111.Google Scholar
Sharkov, B.Y. & Scrivens, R. (2005). Laser ion sources. IEEE Trans. Plasma Phys. 33, 17781785.Google Scholar
Shen, X.K., Lu, Y.F., Gebre, T., Ling, H. & Han, Y.X. (2006). Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303053307.Google Scholar
Torrisi, L., Caridi, F., Margarone, D. & Borrielli, A. (2008 a). Characterization of laser-generated silicon plasma. Appl. Sur. Sci. 254, 20902095.Google Scholar
Torrisi, L., Caridi, F., Margarone, D. & Giuffrida, L. (2008 b). Nickel plasma produced by 532-nm and 1064-nm pulsed laser ablation. Plasma Phys. Rep. 34, 598606.Google Scholar
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.Google Scholar
Tsui, Y.Y., Minami, H., Vick, D. & Fedosejevs, R. (2002). Debris reduction for copper and diamond-like carbon thin film produced by magnetically guided pulsed laser deposition. J. Vac. Sci. Technol. A 20, 744747.Google Scholar
Wolowski, J., Badziak, I., Ivanova-Stanik, I., Parys, P., Stepniewski, W. & Woryna, E. (2004). Magnetic field influence on laser-produced ion stream. Rev. Sci. Instrum. 75, 13531356.Google Scholar
Woryna, E., Parys, P., Wolowski, J. & Mroz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293331.Google Scholar
Yeates, P., Costello, J.T. & Kennedy, E.T. (2010). The DCU laser ion source. Rev. Sci. Instum. 81, 043305-1043305-10.Google Scholar
Zhao, H.Y., Zhang, J.J., Jin, Q.Y., Liu, W., Wang, G.C., Sun, L.T., Zhang, X.Z. & Zhao, H.W. (2016). New development of laser ion source for highly charged ion beam production at Institute of Modern Physics. Rev. Sci. Instrum. 87, 02A917.CrossRefGoogle ScholarPubMed