Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T11:03:45.640Z Has data issue: false hasContentIssue false

Irradiation of materials with short, intense ion pulses at NDCX-II

Published online by Cambridge University Press:  31 May 2017

P.A. Seidl*
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
J.J. Barnard
Affiliation:
Lawrence Livermore National Laboratory, Livermore, USA
E. Feinberg
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
A. Friedman
Affiliation:
Lawrence Livermore National Laboratory, Livermore, USA
E.P. Gilson
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, USA
D.P. Grote
Affiliation:
Lawrence Livermore National Laboratory, Livermore, USA
Q. Ji
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
I.D. Kaganovich
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, USA
B. Ludewigt
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
A. Persaud
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
C. Sierra
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
M. Silverman
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
A.D. Stepanov
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, USA
A. Sulyman
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
F. Treffert
Affiliation:
TU Darmstadt, Darmstadt, Germany
W.L. Waldron
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
M. Zimmer
Affiliation:
TU Darmstadt, Darmstadt, Germany
T. Schenkel
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, USA
*
Address correspondence and reprint requests to: P.A. Seidl, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 58-0111, Berkeley, CA 94720, USA. E-mail: PASeidl@lbl.gov

Abstract

We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 1011 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (106 eV)] He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: XTD-IDA, Los Alamos National Laboratory, Los Alamos, NM, USA.

References

REFERENCES

Baglin, J.E.E., Hodgson, R.T., Chu, W.K., Neri, J.M., Hammer, D.A. & Chen, L.J. (1981). Pulsed proton beam annealing of semiconductors and silicides. Nucl. Instrum. Methods 191, 169.CrossRefGoogle Scholar
Bai, X.-M., Voter, A.F., Hoagland, R.G., Nastasi, M. & Uberuaga, B.P. (2010). Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631.Google Scholar
Bangerter, R.O., Faltens, A. & Seidl, P.A. (2013). Accelerators for inertial fusion energy production. Rev. Accel. Sci. Tech. 6, 85.Google Scholar
Barnard, J.J., More, R.M., Terry, M., Friedman, A., Henestroza, E., Koniges, A., Kwan, J.W., Ng, A., Ni, P.A., Liu, W., Logan, B.G., Startsev, E. & Yuen, A. (2014). NDCX-II target experiments and simulations. Nucl. Instrum. Methods A733, 45.Google Scholar
Bienfait, A., Pla, J.J., Kubo, Y., Stern, M., Zhou, X., Lo, C.C., Weis, C.D., Schenkel, T., Thewalt, M.L.W., Vion, D., Esteve, D., Julsgaard, B., Mølmer, K., Morton, J.J.L. & Bertet, P. (2016). Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 11, 253257.Google Scholar
Davidson, R.C., Kaganovich, I.D., Lee, W.W., Qin, H., Startsev, E.A., Tzenov, S., Friedman, A., Barnard, J.J., Cohen, R.H., Grote, D.P., Lund, S.M., Sharp, W.M., Celata, C.M., de Hoon, M., Henestroza, E., Lee, E.P., Yu, S.S., Vay, J.-L., Welch, D.R., Rose, D.V. & Olson, C.L. (2002). Overview of theory and modeling in the heavy ion fusion virtual national laboratory. Laser Part. Beams 20, 3, 377.Google Scholar
Dorf, M.A., Davidson, R.C., Kaganovich, I.D. & Startsev, E.A. (2012). Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields. Phys. Plasmas 19, 056704.CrossRefGoogle Scholar
Friedman, A., Barnard, J.J., Cohen, R.H., Grote, D.P., Lund, S.M., Sharp, W.M., Faltens, A., Henestroza, E., Jung, J.-Y., Kwan, J.W., Lee, E.P., Leitner, M.A., Logan, B.G., Vay, J.-L., Waldron, W.L., Davidson, R.C., Dorf, M., Gilson, E.P. & Kaganovich, I.D. (2010). Beam dynamics of the Neutralized Drift Compression Experiment-II, a novel pulse-compressing ion accelerator. Phys. Plasmas 17, 056704.Google Scholar
Gilson, E.P., Davidson, R.C., Efthimion, P.C., Gleizer, J.Z., Kaganovich, I.D. & Krasik, Ya.E. (2012). Plasma source development for the NDCX-I and NDCX-II neutralized drift compression experiments. Laser Part. Beams 30, 435.Google Scholar
Gilson, E.P., Davidson, R.C., Efthimion, P.C., Kaganovich, I.D., Kwan, J.W., Lidia, S.M., Ni, P.A., Roy, P.K., Seidl, P.A., Waldron, W.L., Barnard, J.J. & Friedman, A. (2013). Ferroelectric plasma sources for NDCX-II and heavy ion drivers. Nucl. Instrum. Methods A733, 75.Google Scholar
Grisham, L.R. (2004). Moderate energy ions for high energy density physics experiments. Phys. Plasmas 11, 5727.Google Scholar
Ji, Q., Seidl, P.A., Waldron, W.L., Takakuwa, J.H., Friedman, A., Grote, D.P., Persaud, A., Barnard, J.J. & Schenkel, T. (2016). Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies. Rev. Sci. Instrum. 87, 02B707.CrossRefGoogle ScholarPubMed
Liu, W., Koniges, A., Gott, K., Eder, D., Barnard, J., Friedman, A., Masters, N. & Fisher, A. (2017). Surface tension models for a multi-material ALE code with AMR. Comput. Fluids. http://dx.doi.org/10.1016/j.compfluid.2017.01.016.Google Scholar
Persaud, A., Barnard, J.J., Guo, H., Hosemann, P., Lidia, S., Minor, A.M., Seidl, P.A. & Schenkel, T. (2015). Accessing defect dynamics using intense, nanosecond pulsed ion beams. Phys. Procedia 66, 604.Google Scholar
Schenkel, T., Lidia, S.M., Weis, C.D., Waldron, W.L., Schwartz, J., Minor, A.M., Hosemann, P. & Kwan, J.W. (2013). Towards pump-probe experiments of defect dynamics with short ion beam pulses. Nucl. Instrum. Methods B315, 350.Google Scholar
Schwartz, J., Aloni, S., Ogletree, D.F., Tomut, M., Bender, M., Severin, D., Trautmann, C., Rangelow, I.W. & Schenkel, T. (2014). Local formation of nitrogen-vacancy centers in diamond by swift heavy ions. J. Appl. Phys. 116, 214107.Google Scholar
Sefkow, A.B., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Yu, S.S., Roy, P.K., Bieniosek, F.M., Coleman, J.E., Eylon, S., Greenway, W.G., Henestroza, E., Kwan, J.W., Vanecek, D.L., Waldron, W.L. & Welch, D.R. (2006). Fast Faraday cup to measure neutralized drift compression in intense ion charge bunches. Phys. Rev. ST Accel. Beams 9, 052801.Google Scholar
Seidl, P.A., Barnard, J.J., Davidson, R.C., Friedman, A., Gilson, E.P., Grote, D., Ji, Q., Kaganovich, I.D., Persaud, A., Waldron, W.L. & Schenkel, T. (2016). Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment. J. Phys. Conf. Ser. 717, 012079.CrossRefGoogle Scholar
Seidl, P.A., Persaud, A., Waldron, W.L., Barnard, J.J., Davidson, R.C., Friedman, A., Gilson, E.P., Greenway, W.G., Grote, D.P., Kaganovich, I.D., Lidia, S.M., Stettler, M., Takakuwa, J.H. & Schenkel, T. (2015). Short intense ion pulses for materials and warm dense matter research. Nucl. Instrum. Methods A800, 98103.Google Scholar
Tokluoglu, E. & Kaganovich, I.D. (2015). Defocusing of an ion beam propagating in background plasma due to two-stream instability. Phys. Plasmas 22, 040701.CrossRefGoogle Scholar
Waldron, W.L., Abraham, W.J., Arbelaez, D., Friedman, A., Galvin, J.E., Gilson, E.P., Greenway, W.G., Grote, D.P., Jung, J.-Y., Kwan, J.W., Leitner, M., Lidia, S.M., Lipton, T.M., Reginato, L.L., Regis, M.J., Roy, P.K., Sharp, W.M., Stettler, M.W., Takakuwa, J.H., Volmering, J. & Vytla, V.K. (2014). The NDCX-II engineering design. Nucl. Instrum. Methods A733, 226232.CrossRefGoogle Scholar
Wallace, J.B., Charnvanichborikarn, S., Bayu Aji, L.B., Myers, M.T., Shao, L. & Kucheyev, S.O. (2016). Radiation defect dynamics in Si at room temperature studied by pulsed ion beams. J. Appl. Phys. 118, 135709.Google Scholar
Ziegler, J.F., Ziegler, M.D. & Biersack, J.P. (2010). SRIM: The Stopping and Range of Ions in Matter. Nucl. Instrum. Methods B268, 1818. http://www.srim.org.Google Scholar