Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:13:49.980Z Has data issue: false hasContentIssue false

KrF amplifier design issues and application to inertial confinement fusion system design

Published online by Cambridge University Press:  09 March 2009

J.A. Sullivan
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
G.R. Allen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R.R. Berggren
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
S.J. Czuchlewski
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D.B. Harris
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
M.E. Jones
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
B.J. Krohn
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
N.A. Kurnit
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
W.T. Leland
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
C. Mansfield
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. McLeod
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
A.W. McCown
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J.H. Pendergrass
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
E.A. Rose
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
L.A. Rosocha
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
V.A. Thomas
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future single-pulse KrF lasers. The next opportunity to exercise these tools is with the design of the second-generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Major issues include laser physics (energy extraction in large modules with amplified spontaneous emission) and diode performance and efficiency. Low cost is increasingly important for larger future KrF single-pulse systems (low cost and high efficiency is important for larger repetitively pulsed applications such as electric power production). In this article, we present our approach to amplifier scaling and discuss the more important design considerations for large single-pulse KrF amplifiers. We point out where improvements in the fundamental database for KrF amplifiers could lead to increased confidence in performance predictions for large amplifiers and address the currently unresolved issues of anomalous absorption near line center and the possibility of diode instabilities for lowimpedance designs. Los Alamos has applied these amplifier design tools to the conceptual design of a 100-kJ Laser Target Test Facility and a 3-MJ Laboratory Microfusion Facility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bixler, D.N. et al. 1989 U.S. Department of Energy report DOE/DP-0069.Google Scholar
Bixler, D.B. et al. 1993 U.S. Department of Energy report in preparation.Google Scholar
Cartwright D.C., Ed. 1989 Los Alamos National Laboratory.Google Scholar
Czuchlewski, S.J. et al. 1987 Fusion Tech. 11, 560.CrossRefGoogle Scholar
Czuchlewski, S.J. et al. 1991 In Proceedings of the International Conference on Lasers '90, Harris, D.G. and Herbelin, J., eds., STS Press, San Diego, pp. 506512.Google Scholar
Friedlander, F. et al. 1968 Defense Atomic Support Agency report DASA-2173.Google Scholar
Goldhar, J. & Murray, J.R. 1977 Opt. Lett. 1, 199.CrossRefGoogle Scholar
Goldhar, J. & Schlitt, L.G. 1982 Lawrence Livermore National Laboratory Laser Program annual report UCRL-50021–81, pp. 782.Google Scholar
Goldman, L. et al. 1991 Bechtel Corporation report in preparation.Google Scholar
Harris, D.B. et al. 1987 Fusion Tech. 11, 705.CrossRefGoogle Scholar
Harris, D.B. et al. 1991 Los Alamos National Laboratory report LA-UR-91–2915.Google Scholar
Jones, M.E. & Thomas, V.A. 1990 In Proceedings of the 8th International Conference on High-Power Beams, Novosibirsk, USSR, p. 665.Google Scholar
Jory, H.R. & Trivelpiece, A.W. 1969 J. Appl. Phys. 40, 3294.CrossRefGoogle Scholar
Kannari, F. et al. 1987 J. Appl. Phys. 61, 476.CrossRefGoogle Scholar
Kimura, W. & Seamans, J. 1989 Spectra Technology, Inc. final repport 9-X65-W1478’1.Google Scholar
Kimura, W. et al. 1989 In Proceedings of the 1989 CLEO Conference Digest, paper ThP4.Google Scholar
Lmf Cdr, Laur-91–2915, Los Alamos National Laboratory, 1991. pp. C-9–C-12.Google Scholar
Malseed, R. et al. 1989 Titan/Spectron Dev. Labs report SDL-R-076, 89–2846–001.Google Scholar
Mandl, A.E. et al. 1987 Fusion Tech. 11, 545.CrossRefGoogle Scholar
Mansfield, C. et al. 1990 manuscript in preparation.Google Scholar
Matthews, C.W. 1967 Can. J. Phys. 45, 2355.CrossRefGoogle Scholar
McGeoch, M.W. June 1989 Los Alamos National Laboratory Workshop on Large Area Electron Beam Diodes, Monterey, CA.Google Scholar
Monsler, M. 1991 In Proceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA.Google Scholar
Owadano, Y. et al. 1989 Laser Particle Beams 7, 383.CrossRefGoogle Scholar
Parks, J.H. 1980 U.S. Department of Energy report DOE/DP/40113–1.Google Scholar
Ramirez, J.J. & Prestwich, K.R. 1978 Sandia National Laboratories report SAND78–2005.Google Scholar
Rice, J.K. et al. 1980 IEEE J. Quant. Electron. QE-16, 1315.CrossRefGoogle Scholar
Rose, E.A. 1990 In Proceedings of the KrF Laser Technology Workshop, University of Alberta, Edmonton, Alberta, Canada.Google Scholar
Rose, E.A. et al. 1989 Fusion Tech. 15, 364.CrossRefGoogle Scholar
Rose, E.A. et al. 1991 In Proceedings of the SPIE International Symposium on High-Power Lasers, Los Alamos National Laboratory report LA-UR-91–256.Google Scholar
Rosocha, L.A. 1989 In Proceedings of the Los Alamos National Laboratory Workshop in Large Area Electron Beam Diodes, Monterey, CA., supplementary paper.Google Scholar
Rosocha, L.A. & Riepe, K.B. 1987 Fusion Tech. 11, 576.CrossRefGoogle Scholar
Rosocha, L.A. et al. 1990 In Proceedings of the International Conference on Lasers '90, San Diego, CA, pp. 513528.Google Scholar
Rosocha, L.A. et al. “Excimer Lasers for Inertial-Confinement Fusion,” in Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, Velarde, G., Ronen, Y., and Martinez-Val, J., eds. (CRC Press), Chapter 15, pp. 371420.Google Scholar
Sanford, T.W.L. et al. 1988 Sandia National Laboratories report SAND88–1297, p. UC-28.Google Scholar
Schlitt, L.G. & Taska, J. 1975. Lawrence Livermore National Laboratory report UCRL–50021–75, p. 538.Google Scholar
Shaw, M.J. et al. 1982 Appl. Phys. B 28, 127.Google Scholar
Shimauchi, M. et al. 1978 J. Chem. Phys. 68, 5657.CrossRefGoogle Scholar
Shurter, R. et al. 1990 In Proceedings of the XlVth International Symposium on Discharges and Electrical Insulation in Vacuum, Santa Fe, NM.Google Scholar
Smith, I.D. & Aslin, H. 1978 IEEE Trans. Antennas Propagation AP-26, 1.Google Scholar
Smith, I.D. et al. 1974 In Proceedings of the International Conference on Energy Storage and Switching.Google Scholar
Sullivan, J.A. 1987 Fusion Tech. 11, 684.CrossRefGoogle Scholar
Sullivan, J.A. et al. 1990 Los Alamos National Laboratory report LA-UR-90–1721.Google Scholar
Sze, R.C. et al. 1990 In Proceedings of the Conference on Lasers and Electro-Optics (CLEO-90), Anaheim, CA, report CWF46.Google Scholar
Thomas, V.A. & Jones, M.E. 1990 Los Alamos internal memo X-l 279.Google Scholar
Thompson, D.C. et al. 1989 IEEE J. Quantum Electron. 25, 2161.CrossRefGoogle Scholar
Von Rosenberg, C. 1991 In Proceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA.Google Scholar
Waganer, L. 1991 In Proceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA.Google Scholar