Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T01:03:58.316Z Has data issue: false hasContentIssue false

Laser beat wave acceleration of particles

Published online by Cambridge University Press:  09 March 2009

A. Dyson
Affiliation:
Laboratoire d'Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau, France
A. E. Dangor
Affiliation:
Laboratoire d'Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau, France

Abstract

The laser beat wave programs at Rutherford Appleton Laboratory and Ecole Polytechnique are reviewed. The techniques used to generate by multiphoton ionization the highly uniform plasmas needed for the beat wave are described. Evidence of the generation of a 2% plasma wave using laser beams at 1.064 and 1.053 μm is presented. The plasma wave suffers damping, possibly by the modulational instability. The use of a high-power short laser pulse for plasma-wave generation by the wake-field process is discussed. This process has the advantage that there is no resonance as in the beat wave, and since the plasma wave is generated on the time scale of the plasma period, instabilities are unlikely to be important.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amiranoff, F. et al. 1990 J. Appl. Phys. (accepted).Google Scholar
Ashfar-Rad, T. 1990 J. Appl. Phys. (submitted).Google Scholar
Bell, A. R. 1989 Private communication.Google Scholar
Bell, A. R. & Gibbon, P. 1988 Plasma Phys. Controlled-Fusion 30, 1319.CrossRefGoogle Scholar
Bingham, R. 1988 Private communication.Google Scholar
Chen, C. et al. Phys. Rev. Lett. 54, 693.CrossRefGoogle Scholar
Clayton, C. E. et al. Phys. Rev. Lett. 54, 2343.CrossRefGoogle Scholar
Dangor, A. E. et al. 1987 IEEE Trans. Plasma Sci. PS-15 161.Google Scholar
Dangor, A. E. et al. 1988 J. Appl. Phys. 64, 6182.CrossRefGoogle Scholar
Dangor, A. E. et al. 1989 J. Phys. B 22, 797.CrossRefGoogle Scholar
Dangor, A. E. et al. 1990 Phys. Scr. (accepted).Google Scholar
Dangor, A. E. et al. 1991 Plasma Phys. Controlled-Fusion (submitted).Google Scholar
Dyson, A. et al. 1989 J. Phys. B 22, L231.CrossRefGoogle Scholar
Evans, D. E. & Katzenstein, J. 1969 Rep. Prog. Phys. 32, 207.Google Scholar
Gibbon, P. & Bell, A. R. 1988 Phys. Rev. Lett. 61, 1599.CrossRefGoogle Scholar
Karttunen, S. J. & Salomaa, R. R. E. 1986 Phys. Rev. Lett. 56, 604.CrossRefGoogle Scholar
Mora, P. 1988 Rev. Phys. Appl. 23, 1489.CrossRefGoogle Scholar
Rosenbluth, M. N. & Liu, C. S. 1972 Phys. Rev. Lett. 29, 701.CrossRefGoogle Scholar
Rosenzweig, J. B. et al. 1989 Phys. Rev. A 39, 1586.CrossRefGoogle Scholar
Sprangle, P. et al. 1988 Appl. Phys. Lett. 53, 2146.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar