Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T21:24:23.781Z Has data issue: false hasContentIssue false

Laser wake field acceleration with controlled self-injection by sharp density transition

Published online by Cambridge University Press:  01 October 2004

P. TOMASSINI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy
M. GALIMBERTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy
A. GIULIETTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy
D. GIULIETTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy Also at Dipartimento di Fisica, Università di Pisa, Unità INFM, Pisa Italy
L.A. GIZZI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy
L. LABATE
Affiliation:
Intense Laser Irradiation Laboratory, IPCF, Area della Ricerca CNR, Italy Also at Dipartimento di Fisica, Università di Bologna, Bologna Italy
F. PEGORARO
Affiliation:
Dipartimento di Fisica, Università di Pisa, Pisa, Italy

Abstract

Laser Wake Field Acceleration of relativistic electron bunches is a promising method to produce a large amount of energetic particles with table top equipment. One of the possible methods to inject particles in the appropriate acceleration phase of the wake behind the pulse takes advantage of the partial longitudinal breaking of the wake crests across a density downramp. In this paper results of 2.5D PIC simulations, showing the production of an electron bunch with reduced energy spread, are reported. Also, a possible method to produce the required plasma density transition by laser explosion of a suitable couple of thin foils is discussed.

Type
INTERNATIONAL WORKSHOP ON LASER AND PLASMA ACCELERATORS
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was delivered at the International Workshop on Laser and Plasma Accelerators, held at Portovenere, Italy, September 29 to October 3, 2003.

References

REFERENCES

Bulanov, S.V., Kirsakov, V.I. & Sakharov, A.S. (1991). JETP Lett. 53, 565.
Bulanov, S.V., Naumova, N., Pegoraro, F. & Sakai, J. (1998). Particle injection into the wave acceleration phase due to nonlinear wake wavebreaking. Phys. Rev. E 58, R5257R5260.Google Scholar
Bulanov, S.V., Pegoraro, F., Pukhov, A.M. & Sakharov, A.S. (1997). Transverse wave breaking. Phys. Rev. Lett. 78, 42054208.CrossRefGoogle Scholar
Esarey, E., Hubbard, R.F., Leemans, W.P., Ting, A. & Sprangle, P. (1997). Electron Injection into Plasma Wakefields by Colliding Laser Pulses. Phys. Rev. Lett. 79, 26822685.CrossRefGoogle Scholar
Hafz, N., Lee, H.J., Kim, J.U., Suk, H. & Lee, J. (2003). Femtosecond X-ray generation via the Thomson scattering of a terawatt laser from electron bunches produced from the LWFA utilizing a plasma density transition. IEEE Trans. Plasma Sci. 31 6, 13881394.CrossRefGoogle Scholar
High Performance Systems Division of CINECA. (2004). http://www.cineca.it/HPSystems/.
Hosokai, T., Kinoshita, K., Zhidkov, A., Nakamura, K., Watanabe, T., Ueda, T., Kotaki, H., Kando, M., Nakajima, K. & Uesaka, M. (2003). Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser pulse. Phys. Rev. E 67, 036407.Google Scholar
Kotaki, H. et al. (2003). Submitted to Phys. Plasmas. ICFA-Workshop 2003, Portovenere (Italy), 9/28–10/3. http://www.ipcf.cnr.it/plasma_accelerators/.
Pert, G.J. (1981). Algorithms for the self-consistent generation of magnetic fields in plasmas. Jour. Comp. Phys. 43, 111117.CrossRefGoogle Scholar
Ruhl, J. (2000). Collective Super-Intense Laser Plasma Interaction, Als habilitationsschrift dem Fachbereich Physik, Univ. of Darmstadt.
Suk, H., Kim, C., Kim, G.H., Kim, J.U., Ki, I.S. & Lee, H.J. (2003). Energy enhancement in the self-injected laser wakefield acceleration using tapered plasma densities. Phys. Lett. A 316, 233237.CrossRefGoogle Scholar
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Labate, L. & Pegoraro, F. (2003). Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking. Phys. Rev. ST Accel. Beams 6, 121301.Google Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves. Phys. Rev. Lett. 76, 20732076.CrossRefGoogle Scholar