Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T21:08:14.939Z Has data issue: false hasContentIssue false

Laser-assisted proton collision on light nuclei at moderate energies

Published online by Cambridge University Press:  24 April 2015

I.F. Barna*
Affiliation:
Wigner Research Centre of the Hungarian Academy of Sciences, Budapest, Hungary ELI-HU Nonprofit Kft., Szeged, Hungary
S. Varró
Affiliation:
Wigner Research Centre of the Hungarian Academy of Sciences, Budapest, Hungary ELI-HU Nonprofit Kft., Szeged, Hungary
*
Address correspondence and reprint requests to: I. F. Barna, Wigner Research Centre of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 29-33, 1121 Budapest, Hungary. E-mail: barna.imre@wigner.mta.hu

Abstract

We present a non-relativistic analytic quantum mechanical model to calculate angular differential cross-sections for laser-assisted proton nucleon scattering on a Woods–Saxon optical potential where the nth-order photon absorption is taken into account simultaneously. With this novel description we can integrate two well-established fields, namely low-energy nuclear physics and multi-photon processes together. As a physical example we calculate cross-sections for proton–12C collision at 49 MeV in the laboratory frame in various realistic laser fields. We consider optical Ti:sapphire and X-ray lasers with intensities which are available in existing laser facilities or in the future ELI or X-FEL.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdul-Jalil, I. & Jackson, D.F. (1979). Energy dependence of the optical potential for proton scattering from light nuclei. J. Phys. G: Nucl. Phys. 5, 1699.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, I.A. (1972). Handbook of Mathematical Functions, chap. 9, p. 364. 10 edn. Applied Mathematics Series, Washington, D.C.: U.S. Government Printing Office.Google Scholar
Barna, I.F., Apagyi, B. & Scheid, W. (2000). Localization of nonlocal potentials by a Taylor expansion method. J. Phys. G: Nucl. Phys. 26, 323331.CrossRefGoogle Scholar
Bergou, J. (1980). Wavefunctions of a free electron in an external field and their application in intense field interactions. I. Non-relativistic treatment. J. Phys A: Math. Gen. 13, 28172822.CrossRefGoogle Scholar
Bergou, J. & Varró, S. (1980). Wave functions of a free electron in an external field and their application in intense field interactions, II. Relativistic treatment. J. Phys. A: Math. Gen. 13, 28232837.CrossRefGoogle Scholar
Bunkin, F.V. & Fedorov, M.V. (1965). Bremsstrahlung in a strong radiation field. Zh. Eksp. Teor. Fiz. 49, 12151221.Google Scholar
Bunkin, F.V., Kazakov, A.E. & Fedorov, M.V. (1973). Interaction of intense optical radiation with free electrons (nonrelativistic case). Usp. Fiz. Nauk. 15, 416435.Google Scholar
Di Piazza, A., Müller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.CrossRefGoogle Scholar
Ehlotzky, F., Jaron, A. & Kaminski, J. (1998). Electron–atom collisions in a laser field. Phys. Rep. 297, 63153.CrossRefGoogle Scholar
Faisal, F.H.M. (1973). Collision of electrons with laser photons in a background potential. J. Phys. B: At. Mol. Phys. 6, L312L315.CrossRefGoogle Scholar
Faisal, F.H.M. (1987). Theory of Multiphoton Processes. New York: Plenum Press.CrossRefGoogle Scholar
Gontier, Y. & Rahman, N. (1974). Intense electromagnetic field and multiphoton processes. Lett. al Nuovo Cim. 9, 537540.CrossRefGoogle Scholar
Greiner, W. & Maruhn, J.A. (1996). Nuclear Models. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Gunst, J., Litvinov, Y.A., Keitel, C.H. & Pálffy, A. (2014). Dominant secondary nuclear photoexcitation with the X-ray free-electron laser. Phys. Rev. Lett. 112, 082501 (pages 5).CrossRefGoogle Scholar
Habs, D., Tajima, T., Schreiber, J., Barty, C.P.J., Fujiwara, M. & Thirolf, P.G. (2009). Vision of nuclear physics with photo-nuclear reactions by laser-driven beams. Eur. Phys. J. D 55, 279285.CrossRefGoogle Scholar
Hlophe, L., Elster, C., Johnson, R.C., Upadhyay, N.J., Nunes, F.M., Arbanas, G., Eremenko, V., Escher, J.E. & Thompson, I.J. (TORUS Collaboration) (2013). Separable representation of phenomenological optical potentials of Woods-Saxon type. Phys. Rev. C 88, 064608, (pages 11).CrossRefGoogle Scholar
Hodgson, P.E. (1994). The Nucleon Optical Model. Singapore: World Scientific Co. Pvt. Ltd.CrossRefGoogle Scholar
Kornev, A.S. & Zon, B.A. (2007). Nuclear excitation by the atomic electron rescattering in a laser field. Laser Phys. Lett. 4, 588.CrossRefGoogle Scholar
Kroll, N.M. & Watson, K.M. (1973). Charged-particle scattering in the presence of a strong electromagnetic wave. Phys. Rev. A 8, 804809.CrossRefGoogle Scholar
Ledingham, K.W.D. (2005). Laser induced nuclear physics and applications. Nucl. Phys. A 752, 633644.CrossRefGoogle Scholar
Pahlavani, M.R. & Morad, R. (2010). Validity of born approximation for nuclear scattering in path integral representation. Adv. Stud. Theor. Phys., 4, 393404.Google Scholar
Rudchik, A., Shyrma, Y., Kemper, K., Rusek, K., Koshchy, E., Kliczewski, S., Novatsky, B., Ponkratenko, O., Piasecki, E., Romanyshyna, G., Stepanenko, Y., Strojek, I., Sakuta, S., Budzanowski, A., Głowacka, L., Skwirczyńska, I., Siudak, R., Choiński, J. & Szczurek, A. (2010). Isotopic effects in elastic and inelastic 12C + 16, 18O scattering. Eur. Phys. J. A 44, 221231.CrossRefGoogle Scholar
Varner, R., Thompson, W., McAbee, T., Ludwig, E. & Clegg, T. (1991). A global nucleon optical model potential. Phys. Rep. 201, 57119.CrossRefGoogle Scholar
von Geramb, H.V. Ed. (1979). Microscopic Optical Potentials, Lecture Notes in Physics. Vol. 89, Hamburg Topical Workshop on Nuclear Physics, Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
Woods, R.D. & Saxon, D.S. (1954). Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577578.CrossRefGoogle Scholar