Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T19:42:24.077Z Has data issue: false hasContentIssue false

Laser-driven nuclear fusion D+D in ultra-dense deuterium: MeV particles formed without ignition

Published online by Cambridge University Press:  22 April 2010

Shahriar Badiei
Affiliation:
Atmospheric Science, Department of Chemistry, University of Gothenburg, Göteborg, Sweden
Patrik U. Andersson
Affiliation:
Atmospheric Science, Department of Chemistry, University of Gothenburg, Göteborg, Sweden
Leif Holmlid*
Affiliation:
Atmospheric Science, Department of Chemistry, University of Gothenburg, Göteborg, Sweden
*
Address correspondence and reprint requests to: Leif Holmlid, Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden. E-mail: holmlid@chem.gu.se

Abstract

The short D-D distance of 2.3 pm in the condensed material ultra-dense deuterium means that it is possible that only a small disturbance is required to give D+D fusion. This disturbance could be an intense laser pulse. The high excess kinetic energy of several hundred eV given to the deuterons by laser induced Coulomb explosions in the material increases the probability of spontaneous fusion without the need for a high plasma temperature. The temperature calculated from the normal kinetic energy of the deuterons of 630 eV from the Coulomb explosions is 7 MK, maybe a factor of 10 lower than required for ignition. We now report on experiments where several types of high-energy particles from laser impact on ultra-dense deuterium are detected by plastic scintillators. Fast particles with energy up to 2 MeV are detected at a time-of-flight as short as 60 ns, while neutrons are detected at 50 ns time-of-flight after passage through a steel plate. A strong signal peaking at 22.6 keV u−1 is interpreted as due to mainly T retarded by collisions with H atoms in the surrounding cloud of dense atomic hydrogen.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, P.U. & Holmlid, L. (2009). Ultra-dense deuterium: a possible nuclear fuel for inertial confinement fusion (ICF). Phys. Lett. A 373, 30673070.CrossRefGoogle Scholar
Ashcroft, N.W. (2005). Metallic superfluids. J. Low Temp. Phys. 139, 711726.CrossRefGoogle Scholar
Badiei, S. & Holmlid, L. (2006). Experimental studies of fast fragments of H Rydberg matter. J. Phys. B: At. Mol. Opt. Phys. 39, 41914212.CrossRefGoogle Scholar
Badiei, S. & Holmlid, L. (2008). Condensed atomic hydrogen as a possible target in inertial confinement fusion (ICF). J. Fusion Energy 27, 296300.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 a). Fusion reactions in high-density hydrogen: a fast route to small-scale fusion? Int. J. Hydr. Energy 34, 487495.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 b). High-energy Coulomb explosions in ultra-dense deuterium: time-of-flight mass spectrometry with variable energy and flight length. Int. J. Mass Spectrom. 282, 7076.CrossRefGoogle Scholar
Betti, R., Solodov, A.A., Delettrez, J.A. & Zhou, C. (2006). Gain curves for direct-drive fast ignition at densities around 300 g/cc. Phys. Plasmas 13, 100703-1-4.CrossRefGoogle Scholar
Blaich, Th., Elze, Th. W., Emling, H., Freiesleben, H., Grimm, K., Henning, W., Holzmann, R., Ickert, G., Keller, J.G., Klingler, H., Kneissl, W., König, R., Kulessa, R., Kratz, J.V., Lambrecht, D., Lange, J.S., Leifels, Y., Lubkiewicz, E., Proft, M., et al. (1992). A large area detector for high-energy neutrons. Nucl. Instrum. and Meth. A 314, 136154.CrossRefGoogle Scholar
Buersgens, F., Madison, K.W., Symes, D.R., Hartke, R., Osterhoff, J., Grigsby, W., Dyer, G. & Ditmire, T. (2006). Angular distribution of neutrons from deuterated cluster explosions driven by femtosecond laser pulses. Phys. Rev. E 74, 016403.CrossRefGoogle ScholarPubMed
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–92.CrossRefGoogle Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105–11.CrossRefGoogle Scholar
Holmlid, L. (2002). Conditions for forming Rydberg Matter: condensation of Rydberg states in the gas phase versus at surfaces. J. Phys. Condens. Mat. 14, 1346913479.CrossRefGoogle Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Hora, H. & Miley, G.H. (2007). Maruhn–Greiner maximum of uranium fission for confirmation of low energy nuclear reactions LENR via a compound nucleus with double magic numbers. J. Fusion Energy 26, 349355.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Part. Beams 26, 37.CrossRefGoogle Scholar
Jackson, J.D. (1957). Catalysis of nuclear reactions between hydrogen isotopes by μ mesons Phys. Rev. 106, 330339.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Li, X.Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469477.CrossRefGoogle Scholar
Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507.CrossRefGoogle Scholar
Meima, G.R. & Menon, P.G. (2001). Catalyst deactivation phenomena in styrene production. Appl. Catal. A 212, 239245.CrossRefGoogle Scholar
Militzer, B. & Graham, R.L. (2006). Simulations of dense atomic hydrogen in the Wigner crystal phase. J. Phys. Chem. Solids 67, 21362143.CrossRefGoogle Scholar
Muhler, M., Schlögl, R. & Ertl, G. (1992). The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. 2. Surface chemistry of the active phase. J. Catal. 138, 413444.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nat. 239, 139–42.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C. Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Winterberg, F. (2010 a). Ultradense deuterium. J. Fusion Energe. doi:10.1007/s10894-010-9280-4.CrossRefGoogle Scholar
Winterberg, F. (2010 b). The release of thermonuclear energy by inertial confinement. Ways Towards Ignition. Singapore: World Scientific.CrossRefGoogle Scholar
Yang, X., Miley, G.H. & Hora, H. (2009). Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source. AIP Conference Proc. 1103, 450458.CrossRefGoogle Scholar