Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T10:23:11.982Z Has data issue: false hasContentIssue false

Micro-patterning of Indium thin film for generation of micron and submicron particles using femtosecond laser-induced forward transfer

Published online by Cambridge University Press:  28 May 2015

Kamlesh Alti*
Affiliation:
Department of Physics, Sant Gadge Baba Amravati University, Amravati, India
Sudhanshu Dwivedi
Affiliation:
Department of Atomic and Molecular Physics, Manipal University, Manipal, India
Santhosh Chidangil
Affiliation:
Department of Atomic and Molecular Physics, Manipal University, Manipal, India
Deepak Mathur
Affiliation:
Tata Institute of Fundamental Research, Mumbai, India
Alika Khare
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
*
Address correspondence and reprint requests to: Kamlesh Alti, Department of Physics, Sant Gadge Baba Amravati University, Amravati 444 602, India. E-mail: kamleshalti@sgbau.ac.in

Abstract

This paper reports on micro-pattering of Indium thin film (donor substrate) using a higher deposition dose than previously reported. The threshold deposition dose required for micro-patterning was measured. Ejected material from the micro-patterned thin film was deposited onto an accepter substrate kept in close proximity; it clearly shows deposition of micron and submicron particles of Indium. Moreover, a clean line like structure was deposited onto the accepter substrate when the accepter substrate was moved with the same velocity as that of the donor substrate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banks, D.P. (2008). Femtosecond laser induced forward transfer techniques for the deposition of nanoscale, intact, and solid phase material. Ph.D. thesis. Southampton: University of Southampton.Google Scholar
Blanchet, G., Loo, Y.-L., Rogers, J., Gao, F. & Fincher, C. (2003). Large areas, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett., 82, 463465.CrossRefGoogle Scholar
Bohandy, J., Kim, B.F. & Adrian, F.J. (1986). Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys., 60, 15381539.CrossRefGoogle Scholar
Bohandy, J., Kim, B.F., Adrian, F.J. & Jette, A. (1988). Metal deposition at 532 nm using a laser transfer technique. J. Appl. Phys., 63, 11581162.CrossRefGoogle Scholar
Chen, W., Tseng, M., Liao, C., Wu, P., Sun, S., Huang, Y., Chang, C., Lu, C., Zhou, L., Huang, D., Liu, A. & Tsai, D. (2013). Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer. Opt. Express, 21, 618625.CrossRefGoogle ScholarPubMed
Colina, M., Serra, P., Fernández-Pradas, J.M., Sevilla, L. & Morenza, J.L. (2005). DNA deposition through laser induced forward transfer. Biosensors Bioelectron., 20, 16381642.CrossRefGoogle ScholarPubMed
Eaton, S., Zhang, H., Herman, P., Yoshino, F., Shah, L., Bovatsek, J. & Arai, A. (2005). Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express, 13, 47084716.CrossRefGoogle ScholarPubMed
Kántor, Z. & Szorenyi, T. (1995). Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance. J. Appl. Phys., 78, 27752781.CrossRefGoogle Scholar
Kántor, Z., Toth, Z. & Szorenyi, T. (1994a). Metal pattern deposition by laser-induced forward transfer. Appl. Surf. Sci., 86, 196201.CrossRefGoogle Scholar
Kántor, Z., Tóth, Z., Szorenyi, T. & Tóth, A.L. (1994b). Deposition of micrometer-sized tungsten patterns by laser transfer technique. Appl. Phys. Lett., 64, 35063508.CrossRefGoogle Scholar
Karaiskou, A., Zergioti, I., Fotakis, C., Kapsetaki, M. & Kafetzopoulos, D. (2003). Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process. Appl. Surf. Sci., 208–209, 245249.CrossRefGoogle Scholar
Mézel, C., Souquet, A., Hallo, L. & Guillemot, F. (2010). Bioprinting by laser-induced forward transfer for tissue engineering applications: Jet formation modeling. Biofabrication, 2, 014103(1)014103(7).CrossRefGoogle ScholarPubMed
Piqué, A., Arnold, C.B., Wartena, R.C., Weir, D.W., Pratap, B., Swider-Lyons, K.E., Kant, R.A. & Chrisey, D.B. (2002). Laser-induced forward transfer direct-write of miniature sensor and microbattery systems. Proc. Third Int. Symp. Laser Precision Microfabrication Int. Soc. Opt. Eng. (SPIE), 4830, 182188.CrossRefGoogle Scholar
Pique, A., Chrisey, D., Auyeung, R., Fitz-Gerald, J., Wu, H., McGill, R., Lakeou, S., Wu, P., Nguyen, V. & Duignan, M. (1999). A novel laser transfer process for direct writing of electronic and sensor materials. Appl. Phys. A [Suppl.], 69, S279S284.Google Scholar
Schultze, V. & Wagner, M. (1991). Laser-induced forward transfer of aluminum. Appl. Surf. Sci., 52, 303309.CrossRefGoogle Scholar
Tan, B., Venkatakrishnan, K. & Tok, K.G. (2003). Selective surface texturing using femtosecond pulsed laser induced forward transfer. Appl. Surf. Sci., 207, 365371.CrossRefGoogle Scholar
Toet, D., Thompson, M., Smith, P. & Sigmon, T. (1999). Laser-assisted transfer of silicon by explosive hydrogen release. Appl. Phys. Lett., 74, 21702172.CrossRefGoogle Scholar
Tolbert, W., Lee, I., Doxtader, M., Ellis, E. & Dlott, D. (1993). High-speed color imaging by laser ablation transfer with a dynamic release layer: Fundamental mechanisms. J. Imag. Sci. Tech., 37, 411421.Google Scholar
Tóth, Z., Szorenyi, T. & Tóth, A.L. (1993). Ar+ laser-induced forward transfer (LIFT): A novel method for micrometer-size surface patterning. Appl. Surf. Sci., 69, 317320.CrossRefGoogle Scholar
Tseng, M.L., Wu, P.C., Sun, S., Chang, C.M., Chen, W.T., Chu, C.H., Chen, P.L., Zhou, L., Huang, D.W., Yen, T.J. & Tsai, D.P. (2012). Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique. Laser Photon. Rev., 6, 702707.CrossRefGoogle Scholar
Thomas, J., Bernard, R., Alti, K., Dharmadhikari, A.K., Dharmadhikari, J.A., Bhatnagar, A., Santhosh, C. & Mathur, D. (2013). Pattern formation in transparent media using ultrashort laser pulses. Opt. Commun., 304, 2938.CrossRefGoogle Scholar
Thomas, J., Bernard, R., Thomas, J.T., Alti, K., Santhosh, C., Kumari, S., Khare, A. & Mathur, D. (2014). Femtosecond Laser Induced Forward Transfer of Indium thin films. Laser Part. Beams, 32, 5561.CrossRefGoogle Scholar
Veiko, V.P., Shankhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser–induced film deposition by LIFT: Physical mechanisms and applications. Laser Part Beams, 24, 203209.CrossRefGoogle Scholar
Zergioti, I., Mailis, S., Vainos, N.A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C.P., & Fotakis, C. (1998). Microdeposition of metal and oxide structures using ultrashort laser pulses. Appl. Phys. A, 66, 579582.CrossRefGoogle Scholar